Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Improvement of DME HCCI Engine Performance by Fuel Injection Strategies and EGR

2008-06-23
2008-01-1659
The combustion and exhaust emission characteristics of a DME fueled HCCI engine were investigated. Different fuel injection strategies were tested under various injection quantities and timings with exhaust gas recirculation (EGR). The combustion phase in HCCI was changed by an in-cylinder direct injection and EGR, due to changes in the in-cylinder temperature and mixture homogeneity. The gross indicated mean effective pressure (IMEPgross) increased and the hydrocarbon (HC) and carbon monoxide (CO) emissions decreased as the equivalence ratio was augmented. The IMEPgross with direct injection was greater than with the port injection due to retarded ignition timing resulting from latent heat of direct injected DME fuel. It was because that most of burn duration was completed before top dead center owing to higher ignitability for DME with high cetane number. However, HC and CO emissions were similar for both injection locations.
Journal Article

Performance and Emission Characteristics of a Diesel Engine Fueled with Pyrolysis Oil-Ethanol Blend with Diesel and Biodiesel Pilot Injection

2013-10-14
2013-01-2671
The vast stores of biomass available worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several possible paths by which we can convert biomass to higher value products. Pyrolysis oil (PO) derived from wood has been regarded as an alternative fuel to be used in diesel engines. However, the use of PO in a diesel engine requires engine modifications due to the low energy density, high acidity, high viscosity, and low cetane number of PO. Therefore, PO should be blended or emulsified with other fuels that have a high cetane number or used through pilot injection. PO has poor miscibility with light petroleum fuel oils; the most suitable candidate fuels for direct fuel mixing are alcohol fuels. Early mixing with alcohol fuels has the added benefit of significantly improving the storage and handling properties of the PO.
Technical Paper

Characteristics of Syngas Combustion Based on Methane at Various Reforming Ratios

2007-08-05
2007-01-3630
Characteristics of syngas combustion at various reforming ratios were studied numerically. The syngas was formed by the partial oxidation of methane to mainly hydrogen and carbon monoxide and cooled to ambient temperature. Stiochiometric and lean premixed flames of the mixtures of methane and the syngas were compared at the atmospheric temperature and pressure conditions. The adiabatic flame temperature decreased with the reforming ratio. The laminar burning velocity, however, increased with the reforming ratio. For stretched flames in a counterflow, the high temperature region was broadened with the reforming ratio. The maximum flame temperature decreased with the reforming ratio for the stoichiometric case, but increased for the lean case except for the region of very low stretch rate. The extinction stretch rate increased with the reforming ratio, implying that the syngas assisted flame is more resistance to turbulence level.
Technical Paper

Experimental study on characteristics of diesel particulate emissions with diesel, GTL, and blended fuels

2009-09-13
2009-24-0098
Various alternative diesel fuels such as gas to liquid (GTL) fuels, blends of diesel and biodiesel (D + BD20), and blends of GTL and biodiesel (G + BD20) were tested in a 2.0 L four-cylinder turbocharged diesel engine. A noticeable reduction in exhaust emissions as compared to diesel fuel, except for NOx emissions, was observed by blending biodiesel with diesel and GTL fuel under selected part load conditions. There was a maximum reduction of 33% for THC emissions and 27% for CO emissions for G + BD20 fuel as compared to diesel fuel. For PM size distributions, a noticeable decrease in the PM number concentration for all particle sizes less than 300 nm was observed with the blending of biodiesel. In contrast, there was a slight increase in the number concentration of PM with diameters of less than 50 nm for the cases of EGR. In the case of particulate matter (PM) mass concentration, there were reductions of 31~59% for D + BD20 fuel and 57~71% for G + BD20 fuel.
Technical Paper

Effect of Exhaust Gas Recirculation on a Spark Ignition Engine Fueled with Biogas-Hydrogen Blends

2011-09-11
2011-24-0115
Efforts have been made to apply biogas to an IC engine for power generation as a way to cope with the energy crisis as well as to reduce greenhouse gas. However, due to its gas component variations by origin and low energy density, using biogas in the engine applications and achieving a steady power generation is not an easy task. One way to overcome these deficiencies is to add hydrogen in biogas. Because of the excellent combustion characteristics of hydrogen, use of hydrogen-biogas blend fuel can allow not only accomplishing stable in-cylinder combustion, but also reducing the harmful emissions such as THC and CO. Despite several advantages of this approach, there exists a major drawback~a significant increase in NOx emission caused by high adiabatic combustion temperature of hydrogen.
Technical Paper

Comparative Study on Effect of Intake Pressure on Diesel and Biodiesel Low Temperature Combustion Characteristics in a Compression Ignition Engine

2013-10-14
2013-01-2533
Owing to the presence of oxygen atoms in biodiesel, the use of this fuel in compression ignition (CI) engines has the advantage of reducing engine-out harmful emissions. In this context, biodiesel fuel can also be used to extend the low temperature combustion (LTC) regime because it inherently suppresses soot formation within the combustion chamber. Therefore, in this study, LTC characteristics of biodiesel were investigated in a single cylinder CI engine; the engine performance and emission characteristics with biodiesel and conventional petro-diesel fuels were evaluated and compared. A modulated kinetics (MK)-like approach was employed to realize LTC operation. The engine test results showed that LTC operation was achieved by retardation of the fuel injection timing. The results also showed that using biodiesel reduced smoke, THC, and CO emissions but increased NOx emissions.
X