Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

Application of Energy Flow Analysis Focused on Path Visualization into Vehicle Design

2010-10-17
2010-36-0505
The development of new design tools to predict the vibro-acoustic behavior within the vehicle development process is of essential importance to achieve better products in an ever shorter timeframe. In this paper, an energy flow post-processing tool for structural dynamic analysis is presented. The method is based on the conversion of conventional finite element (FE) results into energy quantities corresponding with each of the vehicle subcomponents. Based on the global dynamic system behavior and local subcomponent descriptions, one can efficiently evaluate the energy distribution and analyze the vibro-acoustic behavior in complex structures. By using energy as a response variable, instead of conventional design variables as pressure or velocity, one can obtain important information regarding the understanding of the vibro-acoustic behavior of the system.
Technical Paper

Modeling the Sound Source of an Intake and Predicting the Intake Sound Pressure Level for a Motorcycle

2003-09-15
2003-32-0058
In order to accurately estimate the intake sound pressure level, it is important to improve the accuracy of the air cleaner simulation model and precisely estimate the sound source of the intake. It has been confirmed that the modeling accuracy of an air cleaner can be improved by considering the vibro-acoustic coupling. Meanwhile, the sound source of the intake depends not only on the engine specifications, but on the intake system and even the exhaust system design. In this reported example, since it is difficult to estimate the sound source of the intake only by calculation, due to the aforementioned reasons, actual measurements were carried out to define the sound source. The method is such that the sound source is modeled by acoustic impedance and volume velocity in the engine, and the acoustic impedance is measured using an impedance tube. Then, the sound pressure at the intake opening is measured.
Technical Paper

Inverse Numerical Acoustics of a Truck Engine

2003-05-05
2003-01-1692
Source identification applied to a truck engine and using inverse numerical acoustics is presented. The approach is based on acoustic transfer vectors (ATV) and truncated singular value decomposition (SVD). Acoustic transfer vectors are arrays of transfer functions between surface normal velocity and acoustic pressure at response points. They can be computed using boundary element methods (indirect, direct or multi-domain direct formulations) or finite element methods (in physical or modal coordinates). Regularization techniques such as the so-called L-curve approach are used to identify the optimum SVD truncation. To increase the reliability of the source identification, the approach can use velocity measurements on the boundary surface as well as the standard nearfield pressure measurements. It also allows for linear or spline interpolation of the acoustic transfer vectors in the frequency domain, to increase computational speed.
Technical Paper

Predictive Analysis for Engine/Driveline Torsional Vibration in Vehicle Conditions using Large Scale Multi Body Model

2003-05-05
2003-01-1726
Driveline torsional vibration in vehicles equipped with an automatic gearbox can lead to increased fuel consumption. At low rpm the torque converter of the automatic gearbox is active. The earlier the torque converter can be disengaged and bypassed by a lock-up clutch, the better the efficiency of the engine. Torsional vibrations in the drivetrain could prevent this early locking of the torque convertor and thus lead to a higher fuel consumption. Furthermore, these torsional vibrations can also lead to lower driver comfort. In order to improve the efficiency and the passenger comfort, a hybrid approach has been developed to predict the torsional vibrations of a full vehicle during a run-up manoeuvre on a chassis dyno, including transient effects. The hybrid approach is based on multi body modeling of the full car in LMS DADS, taking into account the flexibility of all major components of the powertrain.
Technical Paper

A Method to Combine a Tire Model with a Flexible Rim Model in a Hybrid MBS/FEM Simulation Setup

2011-04-12
2011-01-0186
During the last ten years, there is a significant tendency in automotive design to use lower aspect ratio tires and meanwhile also more and more run-flat tires. In appropriate publications, the influences of these tire types on the dynamic loads - transferred from the road passing wheel center into the car - have been investigated pretty well, including comparative wheel force transducer measurements as well as simulation results. It could be shown that the fatigue input into the vehicle tends to increase when using low aspect ratio tires and particularly when using run-flat tires. But which influences do we get for the loading and fatigue behavior of the respective rims? While the influences on the vehicle are relatively easy to detect by using wheel force transducers, the local forces acting on the rim flange (when for example passing a high obstacle) are much more difficult to detect (in measurement as well as in simulation).
Technical Paper

Analysis of Global Dynamics of Rotating Systems like Jet Engines, with Special Emphasis on Harmonic Analysis in the Presence of Bearing with Clearances

2013-09-17
2013-01-2120
The paper presents first a description of the methods used for the analysis of global dynamics of rotating systems like jet engines but also auxiliary power units. Different methodologies are described so to model rotating parts using beam, but also Fourier multi-harmonic, three dimensional models or to take into account cyclic symmetry and multistage cyclic symmetry concepts. Advantages and disadvantages of the different model types are discussed and compared. The coupling of the rotating parts with casings and stators is then discussed both in the inertial frame and in the rotating frame. The effect on global dynamics of bearing and other linking devices is taken into account for different type of analysis from critical speed analysis, to harmonic and transient analysis. The effect of gears and gear boxes coupling different rotors (like it is the case for auxiliary power units in a jet engine) is then discussed and appropriate methods described so to model this coupling effect.
Technical Paper

ESC Hydraulic Circuit Modeling and Model Reduction in the Aim of Reaching Real Time Capability

2013-05-15
2013-36-0013
An ESC hydraulic modulator contains on/off valves and proportional valves. A complex model of one proportional valve is detailed and used as a basis for model reduction the activity index technique. One interesting aspect is that the technology of the proportional valves remains (i.e. ball valves under conical seat). As such, the parameters are physical parameters forming the ones to master (manufacturing tolerances) by the supplier to also master the dynamic behavior of the system. Once this has been done, a complete model of half an ESC braking circuit is built including the pump, the reservoir, the pipes and hoses as well as the calipers. The activity index technique is thus reused on the circuit to further reduce it to finally obtain a modeling level acceptable for real time purpose.
Technical Paper

Vibration Qualification Test of an Aircraft Piccolo Tube Using Multiple-Input-Multiple-Output Control Technology

2013-09-17
2013-01-2315
Wing Anti-Icing Systems (WAIS) are integral part of a wing design. Their presence ensures safety in all-weather conditions. In standard designs, the WAIS are fitted in the slat internal structure and runs throughout its span in between the ribs. Given its critical function, such a system has to pass qualification test. The test specification is dictated by international standards. In the case discussed in this article, the standard adopted is the RTCA DO-160G “Environmental Conditions and Test Procedures for Airborne Equipment”. In particular, the work presented here concerns with the Vibration environmental test. The standard prescribes a number of dynamic tests to be carried out on the AIS: random, shock and sine excitation tests have to be performed in order to study their effect on the parts composing the Anti-Icing System. The standard prescribes vibration levels at the attachment locations of the AIS to the wings' ribs.
Technical Paper

Performance Comparison of Real-Time and General-Purpose Operating Systems in Parallel Physical Simulation with High Computational Cost

2014-04-01
2014-01-0200
Real-time simulation is a valuable tool in the design and test of vehicles and vehicle parts, mainly when interfacing with hardware modules working at a given rate, as in hardware-in-the-loop testing. Real-time operating-systems (RTOS) are designed for minimizing the latency of critical operations such as interrupt dispatch, task switch or inter-process communication (IPC). General-purpose operating-systems (GPOS), instead, are designed for maximizing throughput in heavy-load systems. In complex simulations where the amount of work to do in one step is high, achieving real-time depends not only in the latency of the event starting the step, but also on the capacity of the system for computing one step in the available time. While it is demonstrated that RTOS present lower latencies than GPOS, the choice is not clear when maximizing throughput is also critical.
Technical Paper

Using Mechanical-Acoustic Reciprocity for Diagnosis of Structure Borne Sound in Vehicles

1993-05-01
931340
The low frequency interior noise in cars is for a large part the result of structure borne excitation. The transfer of the structure borne sound involves a large number of components of the engine suspension, wheel suspension and chassis which are all potentially contributing to the overall noise level. This process can be analyzed through a combination of transfer function measurements with operational measurements under normal conditions. This technique, called transfer path analysis, requires large numbers of transfer function measurements with excitation of the body or cabin at the rubber mountings. Unfortunately, bad access to these crucial measurement locations causes either high instrumentation and measurement effort or less accurate measurement data. The practicality and quality of the measurements can be improved by using reciprocal measurements for the mechano-acoustic transfer of the body or cabin structure; a loudspeaker in the cavity is used for the reciprocal excitation.
Technical Paper

Experimental Transfer Path Analysis of a Hybrid Bus

2005-05-16
2005-01-2335
This paper presents the results of an experimental test campaign carried out on a city bus powered by serial hybrid power train. The driveline system combines an Internal Combustion Engine with a battery pack and two electric motors. Tests were aimed at identifying the salient signal characteristics of the noise spectra recorded during operating conditions and to assess the acoustic comfort in the passenger compartment. Transfer Path Analysis technique was applied to identify airborne and structure borne vibro-acoustic loads, to measure transfer functions linking source locations to target locations and to estimate the internal vibro-acoustic comfort in operating conditions.
Technical Paper

Vibration Testing and Modal Analysis of Airplanes – Recent Advances

2004-11-02
2004-01-3140
The paper will introduce some recent advances in vibration testing and modal analysis of airplanes. Recently, a very promising parameter estimation method became available, that has the potential to become the new standard. The main advantage of this so-called PolyMAX method is that it yields extremely clear stabilization diagrams even for broadband and high-order analyses. The method will be applied to two aircraft cases: a Ground Vibration Test using broadband shaker excitation on a small composite aircraft and in-flight data using natural turbulences as excitation. These two data sets allow illustrating both the classical Frequency Response Function based as well as the operational output-only modal analysis process.
Technical Paper

Prediction of System-Level Gear Rattle Using Multibody and Vibro-Acoustic Techniques

2004-09-27
2004-32-0063
The objective of this paper is to present the development and the use of a numerical model to predict noise radiated from manual gearboxes due to gear rattle using Computer-Aided Engineering (CAE) technologies. This CAE process, as outlined in this paper, includes measured data, computational flexible multibody dynamics, and vibro-acoustic analysis. The measured data is used to identify and reproduce the input excitation which is primarily generated from engine combustion forces. The dynamic interaction of the gearbox components, including flywheel, input/output shafts, contacting gear-pairs, bearings, and flexible housing is modeled using flexible multibody techniques. The acoustic response to the vibration of the gearbox housing is then predicted using vibro-acoustic techniques. These different technologies are augmented together to produce a virtual gearbox that can be used in noise, vibration, and harshness (NVH) performance evaluations.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
X