Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Benefits of Active Head Restraints for Compliance to Rear Impact Test Requirements

2007-04-16
2007-01-0371
The International Insurance Whiplash Protection Group (IIWPG) rating system has driven improvements in head restraint (head restraint) geometry and the addition of a dynamic test has helped address head restraint construction parameters. FMVSS 202a Static imposes more stringent requirements on backset and stiffness and the Dynamic option relaxes the potentially uncomfortable backset requirement if angular head movement can be limited to a specified level. These two requirements utilize different crash dummies and measurement parameters. The BioRID2 ATD (IIWPG) rewards a seat with good torso penetration to reduce neck loading. Seats with high comfort content tend to rate low. The Hybrid III-50 ATD (FMVSS) rewards limited lower torso penetration to reduce head rotation relative to the torso. Current production seats without active head restraints (AHR) are difficult to optimize to meet both the requirements of FMVSS 202a Dynamic and earn an IIWPG rating of Good.
Technical Paper

2005 Ford GT - Interior Trim & Electrical

2004-03-08
2004-01-1256
Driven by a tight vehicle development schedule and unique performance and styling goals for the new Ford GT, a Ford-Lear team delivered a complete interior and electrical package in just 12 months. The team used new materials, processes and suppliers, and produced what may be the industry's first structural instrument panel.
Technical Paper

2005 Ford GT Electrical & Electronics

2004-03-08
2004-01-1259
The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
Technical Paper

The Use of Subjective Jury Evaluations for Interior Acoustic Packaging

2003-05-05
2003-01-1506
Unweighted dB, dB(A), and Articulation Index do not always accurately identify the sound quality of vehicle interior noise. This paper attempts to determine the relevance of sound quality in interior automotive acoustics. Traditionally, overall dB(A) levels have been the driving factor, along with cost, in selecting an interior automotive acoustic package. In this paper, we make use of subjective jury evaluations to compare perceptions of various interior acoustic packages and compare these results to objective values. These values include, but are not restricted to, dB, dB(A), and Articulation Index. Considerations are made as to whether differences between packages can be perceived by customers. This paper also attempts to show that subjective evaluations can differ with the standard metrics used to select acoustic packages and describe why such evaluations might be important in acoustic package selection.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

Development of a Luxury Vehicle Acoustic Package using SEA Full Vehicle Model

2003-05-05
2003-01-1554
Interior noise has become a significant performance attribute in modern passenger vehicles and this is extremely important in the luxury market segment where a quiet interior is the price of entry. With the elimination of early prototype vehicles to reduce development costs, high frequency analytical SEA models are used to design the vehicle sound package to meet targets for interior noise quality. This function is important before representative NVH prototypes are available, and later to support parameter variation investigations that would be cost prohibitive in a hardware test. This paper presents the application of an analytical full vehicle SEA model for the development of the acoustic package of a cross over luxury utility vehicle. The development concerns addressed were airborne powertrain noise and road noise. Power flow analysis was used to identify the major noise paths to the interior of the vehicle.
Technical Paper

SAE Recommended Formats for Presenting Acoustical Data

2003-05-05
2003-01-1439
Automobile manufacturers recently requested the help of the SAE Acoustical Materials Committee to develop standard data formats that could be used by suppliers to present data on NVH products. An SAE task force with representatives from material suppliers and from OEMs chose formats covering a broad range of acoustical tests commonly conducted in the automotive industry. These formats cover both material and vehicle tests. They include details on samples and test conditions and graphs with preferred axes and data ranges. SAE recommended practice J2629 will be issued that describes the use of these preferred formats for acoustical data. The automobile manufacturers have requested that all suppliers of NVH products use these formats to present results from this point onward.
Technical Paper

Human Modeling: Controlling Misuse and Misinterpretation

2003-06-16
2003-01-2178
Human models are viable methods of introducing human factors and ergonomic objectives into the design process at an early stage. Used correctly, they allow users to simulate and analyze potential human-machine interactions saving time and money. As with any model, mistakes can be made. The primary sources of error stem from incorrect use and misinterpretation of the results by the analyst. The development of three-dimensional human modeling software has only compounded these issues by adding a digital subject, itself a human model. This complicates the interpretation and use of these tools by layering one human model on top of another. The purpose of this paper is to highlight common categories of misuse and misinterpretation of digital human models as well as to propose a method for improving user understanding of human models through formal documentation of critical components.
Technical Paper

Beyond Percentiles: An Examination of Occupant Anthropometry and Seat Design

2004-03-08
2004-01-0375
Size is one of the most basic and important factors when determining fit for people. Many methods used to test occupant fit and accommodation rely on a traditional set of three different sized manikins - 5th, 50th and 95th percentiles. Anthropometry, the study of human size dimensions, however, is a complex multivariate problem. Real people, real drivers are a mixture of dimensions tall thin, short, stout, etc. This paper examines population anthropometry and these traditional percentiles specific to vehicular seat design.
Technical Paper

Package Tray Optimization Using Experimental and Analytical Techniques

1999-05-17
1999-01-1686
The area in the neighborhood of the package tray can be a significant path for road noise and exhaust noise. Air extraction routes and loudspeakers add to the difficulty of effective system design. A variety of designs were prototyped and their transmission loss measured in a standard SAE J1400 sound transmission loss suite. The performance of the various designs was compared to an untrimmed piece of sheet metal with embedded air extraction holes. The addition of trim added from 1 dB to 14 dB to the transmission loss. Statistical energy analysis (SEA) models of a variety of package tray systems will also be shown. Both of these techniques can provide design guidance at an early stage of vehicle program development.
Technical Paper

Creating a Biofidelic Seating Surrogate

1999-03-01
1999-01-0627
In order to more accurately simulate the load distributions and histories experienced by automotive seats in field use, more biofidelic motion and loading devices are needed. A new test dummy was developed by Lear Corporation and First Technology Safety Systems. This dummy uses exact skeletal geometry encased in a one-piece seamless mold with contours based on ASPECT data. A prototype was constructed and tested to demonstrate the efficacy of the concept. The skeleton and contour molds were created from CAD-generated rapid prototypes. The flesh was carefully formulated to have the mechanical properties of bulk muscular tissue in a state of moderate contraction, using data from the literature. This design allows much greater accuracy in reproducing human loads than was ever possible previously. The design has applications in durability, vibration and comfort testing.
Technical Paper

Creating the Next Generation Ingress/Egress Robot

1999-03-01
1999-01-0628
In order to more accurately simulate the load distributions and histories experienced by automotive seats in field use, more biofidelic motion and loading devices are needed. Lear and KUKA have developed a system capable of controlling the coordinated motions of a pelvis, thighs and torso dummy in order to mimic human motions. The system takes kinematic data collected from human trials and converts them directly to a robot program. Additionally, simultaneous measures of human loading using pressure distribution mats can be obtained, and these measures are used as the basis for teaching the robot to correct the kinematic data using a neural net learning algorithm. The robot has direct and indirect load feedback integration that allows the load to be precisely maintained throughout the duration of a cycle test.
Technical Paper

Static Electricity in Automotive Interiors

1999-03-01
1999-01-0631
Seats and carpets were evaluated for generating static charges on vehicle occupants. Active measures that eliminate or reduce static accumulation, and passive measures that dissipate static charge in a controlled manner were investigated. The active measures include using durable anti-static finishes or conductive filaments in seating fabrics. The passive measures include adopting conductive plastics in a steering wheel, seat belt buckle release button, or door opening handle. The effectiveness of these measures was tested in a low humidity environment.
Technical Paper

A New Dummy for Vibration Transmissibility Measurement in Improving Ride Comfort

1999-03-01
1999-01-0629
Continuing effort in measuring human vibration response results in a new design of vibration comfort dummy. The difference between this new dummy and other mechanical dummies is that (1) it uses a soft human-tissue like lower torso so it matches compliance better than the previous ones, and (2) it utilizes the spring and damping characteristics of the compliant lower torso. The lower torso is integrated with a spring-mass load simulating the top body of human so that the integrated dummy consists of two parts. This unique design greatly improves the accuracy and stability of transmissibility measurement and provides a direct application tool in seat prototype development. The results measured with dummy are compared with that measured with 3 human subjects in different percentiles and good match is found in the first transmissibility resonance and overall vibration response.
Technical Paper

Automotive Seating Foam: Subjective Dynamic Comfort Study

1999-03-01
1999-01-0588
Many studies have been done to objectively measure car seat foam properties and correlate them to comfort performance. Typically, the vibration characteristics (namely transmissibility) of the foam cushion are measured. It has been generally accepted that low natural frequency equates to better comfort. However, no subjective studies have been done to verify that humans can feel the vibration differences that are measured. Also, the measured differences of the foam may not be detectable once the foam is built into a complete seat. Three different foam formulations utilizing MDI (methylene diphenyl diisocyanate) and TDI (toluene diisocyanate) technology were evaluated for vibration characteristics. The foams were then submitted to subjective human testing and objective lab testing after being built into seats. The subjective testing was done using a typical ride and drive evaluation where people were interviewed about the comfort of the seat while driving over various road conditions.
Technical Paper

User Friendly Trucks

1997-02-24
970275
Today trucks account for close to half of the US passenger vehicle market. And customers expect more and more from their trucks in terms of comfort and convenience features. The key to developing Best-in-Class comfort and convenience attributes lies in applying Ergonomic principles to the vehicle interior design. Lear Corporation has recently studied 4 truck interiors in the Sport Utility Market Segment focusing on Ergonomic design issues. This paper will review the Sport Utility study results and make interior design recommendations. In this market, functionality is of primary importance to customers. Using random samples of truck owners, we have examined the functionality of door panels, consoles, controls, cupholders, cargo covers and the rear cargo area. Several factors ranging from reach criteria, tactile feel and usability through operating efforts and the motion required to operate the various features were examined.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
X