Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of a Fluid Systems Servicer (FSS) for the International Space Station

1997-07-01
972407
The Fluid Systems Servicer (FSS) is designed to drain, purge, fill, and recirculate fluids while performing on-orbit start-up, scheduled, and unscheduled maintenance for fluid lines on the International Space Station (ISS). The FSS will utilize space vacuum for purging operations, thus, providing essentially unpowered vacuum back-filling capability. There is also a fluids pump in the FSS which is used for draining and recirculating water. The recirculation mode fulfills an additional design requirement of removing gas bubbles by directing water through a static membrane separator. Several flex-lines and adapters which interface various ISS lines via self-sealing Quick Disconnects (QD), are part of the FSS assembly. The FSS has its own power cord enabling excellent transportability. This feature, as well as, the QD adapters, enables the FSS to be used anywhere on station for numerous servicing tasks.
Technical Paper

Functional Testing and Packaging of a Fluid Systems Servicer (FSS) for the International Space Station

1998-07-13
981770
The Fluid Systems Servicer (FSS) is designed to drain, purge, fill, and recirculate fluids while performing on-orbit start-up, scheduled and unscheduled maintenance for fluid lines leak check ports, and window assemblies on the International Space Station (ISS). The FSS will undergo extensive functional testing to verify that all design requirements have been met. The FSS will utilize space vacuum for purging operations on-orbit, thus providing vacuum back-filling capability with minimal power consumption. For ground testing, the application of space vacuum will be simulated. A full scale mock-up of the Space Station 20″ Window Assembly has been built for requirements verification. Two desiccator assembly Orbital Replacement Units (ORU)s will be tested to assure the FSS can perform window servicing requirements. The FSS gas/liquid separator fulfills an additional design requirement of removing gas bubbles from fluids with a static membrane separator.
Technical Paper

Design of a Water Electrolysis Flight Experiment

1993-07-01
932087
Supply of oxygen (O2) and hydrogen (H2) by electrolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missions. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. Life Systems, Inc., in conjunction with NASA, has been developing an alkaline-based Static Feed Electrolyzer (SFE). During the development of the water electrolysis technology over the past 23 years, an extensive engineering and scientific data base has been assembled.
Technical Paper

An Update of the Readiness of Vapor Compression Distillation for Spacecraft Wastewater Processing

1992-07-01
921114
Vapor Compression Distillation technology has proved its readiness as a spacecraft wastewater processor as evidenced by selection of this technology for the Urine Processor Assembly aboard Space Station Freedom. In conjunction with Boeing Aerospace Company and the National Aeronautics and Space Administration, Life Systems' technical team has made significant advances in both flight hardware design and software operational aspects. The flight hardware design has focused on Orbital Replacement Unit (ORU) design, ORU rack packaging and ORU weight reduction. On orbit operational aspects of software include operating modes, process control loops, fault detection and fault isolation. These improvements are further indication that Vapor Compression Distillation will be the key to providing wastewater regeneration essential for long-term human survival in space.
Technical Paper

Sabatier Carbon Dioxide Reduction System for Space Station Freedom

1992-07-01
921189
Regenerative processes for the revitalization of spacecraft atmospheres are required for extended duration space missions like the Space Station Freedom. A major atmosphere revitalization function is the recovery of oxygen from metabolic carbon dioxide by means of carbon dioxide reduction. The Sabatier carbon dioxide reduction technology is the baseline technology for the Space Station Freedom for this purpose. Life Systems has performed characterization and endurance testing of Sabatier reactor assemblies that has been used to design a prototype Sabatier reactor that complies with the performance requirements of the Space Station Freedom Carbon Dioxide Reduction Assembly. Information presented in the paper defines the testing that was used to design the prototype reactor and presents the successful test results that have been achieved using this reactor as part of an automated Sabatier based Carbon Reduction Assembly.
Technical Paper

A Comparison of Russian and American Oxygen Generation Hardware

1994-06-01
941250
Cooperation between Russia and the United States on manned spaceflight has led to unprecedented openness, resulting in the ability to now compare the characteristics of environmental control/life support hardware selected to generate oxygen (O2) by water electrolysis for space station applications. This comparison in this paper focuses on the characteristics that have the greatest effect on the cost of assembling and maintaining the hardware in space: launch weight, volume, power consumption, resupply requirements and maintenance labor.
Technical Paper

EDC Development and Testing for the Space Station Program

1986-07-14
860918
Progressive development of Electrochemical Carbon Dioxide (CO2) Concentration (EDC) technology by Life Systems under the sponsorship of the National Aeronautics and Space Administration (NASA) has resulted in subsystem hardware and Control and Monitor Instrumentation (C/M I) that are ideally suited for application to the Space Station program. The development effort has simplified the mechanical assembly to where only seven Orbital Replacement Units (ORUs), including two integrated components, are required to perform the process function. This simplification results in subsystem weight, power and volume requirements that are less than those of competing technologies. Further, process simplification provides both superior reliability and enhanced maintainability. Control and Monitor Instrumentation development has focused on utilization of state-of-the art electronics and software features that enhance subsystem reliability through fault detection and isolation.
Technical Paper

Fluid Systems Servicing and Leak Check for the International Space Station

2000-07-10
2000-01-2310
There is an assortment of hardware designed to work together to provide fluid servicing, seal leak checking and other plumbing-type services on the International Space Station (ISS). The Fluid Systems Servicer (FSS) is designed to drain, purge, fill, and recirculate fluids for on-orbit start-up, scheduled and unscheduled maintenance. The FSS will utilize space vacuum for purging operations on-orbit via the Vacuum Access Jumpers (VAJ), thus providing vacuum back-filling and static leak check capability with minimal power consumption. The FSS services Internal Thermal Control Systems (ITCS) and Environmental Control & Life Support (ECLS) System hardware in the pressurized elements of the ISS. The FSS gas/liquid separator fulfills an additional design requirement of removing entrained gas from fluids by means of a static membrane separator. The FSS and some ancillary equipment also perform Seal Leak Check (SLC), pressure removal and equalization, and window assembly maintenance on ISS.
X