Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design of a Water Electrolysis Flight Experiment

1993-07-01
932087
Supply of oxygen (O2) and hydrogen (H2) by electrolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missions. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. Life Systems, Inc., in conjunction with NASA, has been developing an alkaline-based Static Feed Electrolyzer (SFE). During the development of the water electrolysis technology over the past 23 years, an extensive engineering and scientific data base has been assembled.
Technical Paper

Sabatier Carbon Dioxide Reduction System for Space Station Freedom

1992-07-01
921189
Regenerative processes for the revitalization of spacecraft atmospheres are required for extended duration space missions like the Space Station Freedom. A major atmosphere revitalization function is the recovery of oxygen from metabolic carbon dioxide by means of carbon dioxide reduction. The Sabatier carbon dioxide reduction technology is the baseline technology for the Space Station Freedom for this purpose. Life Systems has performed characterization and endurance testing of Sabatier reactor assemblies that has been used to design a prototype Sabatier reactor that complies with the performance requirements of the Space Station Freedom Carbon Dioxide Reduction Assembly. Information presented in the paper defines the testing that was used to design the prototype reactor and presents the successful test results that have been achieved using this reactor as part of an automated Sabatier based Carbon Reduction Assembly.
Technical Paper

Electrochemical CO2 and O2 Separation for Crew and Plant Environments

1992-07-01
921319
For long-duration space explorations such as the advanced manned missions to the moon and Mars, fully optimized environmental conditions and control systems are essential. This approach will not only maximize the efficiencies of the crew and other systems, but also minimize the requirements for power, weight, volume and expendables. Life Systems, working with the National Aeronautics and Space Administration-Johnson Space Center, has been investigating ways to apply various physical, chemical and electrochemical methods for this purpose. This paper presents a description of a closed ecosystem concept that includes electrochemical CO2 and O2 separators and a moisture condenser/separator for maintaining CO2, O2 and humidity levels in the crew and plant habitats at their respective optimal conditions. This concept was developed as a part of the Advanced Electrochemical CO2 Removal Process Study program sponsored by NASA-JSC.
X