Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Unified Approach to Forward and Lane-Change Collision Warning for Driver Assistance and Situational Awareness

2008-04-14
2008-01-0204
A unified approach to collision warning due to in-lane and neighboring traffic is presented. It is based on the concept of velocity obstacles, and is designed to alert the driver of a potential front collision and against attempting a dangerous lane change maneuver. The velocity obstacle represents the set of the host velocities that would result in collision with the respective static or moving vehicle. Potential collisions are simply determined when the velocity vector of the host vehicle penetrates the velocity obstacle of a neighboring vehicle. The generality of the velocity obstacle and its simplicity make it an attractive alternative to competing warning algorithms, and a powerful tool for generating collision avoidance maneuvers. The velocity obstacle-based warning algorithm was successfully tested in simulations using real sensor data collected during the Automotive Collision Avoidance System Field Operational Test (ACAS FOT) [10].
Technical Paper

Forward Collision Warning: Preliminary Requirements for Crash Alert Timing

2001-03-05
2001-01-0462
Forward collision warning (FCW) systems are intended to provide drivers with crash alerts to help them avoid or mitigate rear-end crashes. To facilitate successful deployment of FCW systems, the Ford-GM Crash Avoidance Metrics Partnership (CAMP) developed preliminary minimum functional requirements for FCW systems implemented on light vehicles (passenger cars, light trucks, and vans). This paper summarizes one aspect of the CAMP results: minimum requirements and recommendations for when to present rear-end crash alerts to the driver. These requirements are valid over a set of kinematic conditions that are described, and assume successful tracking and identification of a legitimate crash threat. The results are based on extensive closed-course human factors testing that studied drivers' last-second braking preferences and capabilities. The paper reviews the human factors testing, modeling of results, and the computation of FCW crash alert timing requirements and recommendations.
X