Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Integral Flex-Vehicle Mixture Control of Alcohol-Based Bio-Fuels - A New Challenge for Fuel-Atomizer Optimization

2008-04-14
2008-01-0437
The paper presents the main reasons for the increasing market share of vehicles with the capacity to run on random bio fuel blends. It describes the philosophy and basic layout of current integral flex mixture preparation systems. The paper demonstrates the necessity to introduce a series of new high-performance analysis tools for further improvement of the mixture preparation system and in particular the fuel injector performance. The paper continues with a discussion of the basic structure of the interactive Virtual Engine Model approach applied to fuel injector atomizer optimization. Test results obtained by application of the new tools to two different series production flex engines are presented. The impact of the improved spray formation capability of the optimized fuel injector atomizers is explained and experimental vehicle FTP-cycle data are reported and discussed.
Technical Paper

Experimental and Numerical Approach to Productionizing a GDI-2 Stroke Spark Ignited Small Displacement Engine Design

1999-09-28
1999-01-3290
The first part of the paper gives an overview of the environmental conditions with which a future two stroke powered vehicle must comply and explains the reasons for which a direct gasoline injection into the combustion chamber offers a potential solution. The paper continues with a description of the fuel/air mixture injection used in the F.A.S.T. concept and gives a detailed overview of the layout of the 125 cc engine to which it is applied. The structure of its electronic engine management system, mandatory for the necessary control precision, is presented. Hereafter is made a short introduction to the visualization and numerical computation tools used for the engine design optimization. The paper concludes with a detailed presentation and discussion of the experimental results obtained with the engine operated, either in steady state and transient conditions on an engine test rig, and mounted in a classic small dimension two-wheel vehicle submitted to road tests.
Technical Paper

Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing

2000-03-06
2000-01-0532
The first part of the paper gives an overview of the current status in fuel consumption gain of the GDI-vehicles previously launched on the European market. In order to increase the potential for a further gain in specific fuel consumption the behaviour of 3 different combustion chamber layouts are studied. The chamber layouts are aimed to adapt as well as possible to the particular requirements for application to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application that shows the different steps of a structured optimisation methodology for a 1.2 litre, small bore 4-cylinder engine. The applications of an air-motion-guided and a wall-guided layout with a mechanically actuated valve train to the same combustion chamber are discussed. The potential of the air-motion-guided concept is enhanced through the introduction of an electromagnetic fully variable valve train.
X