Refine Your Search

Topic

Author

Search Results

Technical Paper

New Methodology of Life Cycle Assessment for Clean Energy Vehicle and New Car Model

2011-04-12
2011-01-0851
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040.
Technical Paper

A Study on Improvement of Indicated Thermal Efficiency of ICE Using High Compression Ratio and Reduction of Cooling Loss

2011-08-30
2011-01-1872
Improvement of indicated thermal efficiency of internal combustion engines is required, and increasing the compression ratio is an effective solution. In this study, using a CAE analysis coupling a 0-dimensional combustion analysis and a 1-dimensional heat conduction analysis, the influence of compression ratio on indicated thermal efficiency and combustion was investigated. As a result, it was found that there was an optimal compression ratio that gave the best indicated thermal efficiency, because the increase of cooling loss caused by high compression was bigger than the increase of theoretical indicated thermal efficiency in some cases. Next, the influence of cooling loss reduction on the optimal compression ratio was investigated. It was found that indicated thermal efficiency improved by reducing cooling loss, because the compression ratio which made the best indicated thermal efficiency was shifted to higher compression ratio.
Journal Article

Combustion Technology Development for a High Compression Ratio SI Engine

2011-08-30
2011-01-1871
Internal combustion engines still play a vital role in realizing the low carbon society. For spark ignition engines, further improvement in thermal efficiency can be achieved by increasing both compression and specific heat ratios. In the current work, the authors developed practical technologies to prevent output power loss due to knocking at full load, which is a critical issue for increasing compression ratio. These new technologies allowed to increase the compression ratio significantly and provide an equivalent torque level as a conventional engine. As a result, thermal efficiency has been improved at partial load.
Technical Paper

Visualization Study on Lubricant Oil Film Behavior around Piston Skirt

2011-08-30
2011-01-2119
Understanding of the oil film formation mechanism around a piston skirt is very important to reduce the friction loss at piston skirt. We have investigated lubricant oil film behavior around piston skirt which is affected by piston slap under motoring condition. In this study, a cylinder liner of a commercial engine is displaced with a quartz cylinder. Photographic observations of oil film behavior between the cylinder liner and the piston skirt were performed with two kinds of methods; direct monochromatic photography and LIF (Laser Induced Fluorescence) image using a high speed camera. The oil film distributions were determined from oil boundary observed by the direct photography, and oil film thickness was estimated from the LIF intensity. Differences of the oil film distributions and the oil film thickness depending on piston shapes were investigated for four types of pistons.
Technical Paper

A General Method of Life Cycle Assessment

2012-04-16
2012-01-0649
In previous Life Cycle Assessment (LCA) methods, environmental burden items to be analyzed, prior to a life cycle inventory analysis, were assumed as the main factors of environmental problems regardless of the product category. Next, the life cycle inventory analysis, in which the total amount of environmental burden items emitted during the life cycle of a product was calculated, and an environmental impact assessment were performed. The environmental impact assessment was based on the initially assumed environmental burden items. The process, in other words, was a particular solution based on this assumption. A general solution unconstrained by this assumption was necessary. The purpose of this study was to develop a general method of LCA that did not require such initially assumed environmental burden items, and to make it possible to perform a comprehensive environmental impact assessment and strategically reduce environmental burden of a product.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Journal Article

A Numerical Study on Detailed Soot Formation Processes in Diesel Combustion

2014-10-13
2014-01-2566
This study simulates soot formation processes in diesel combustion using a large eddy simulation (LES) model, based on a one-equation subgrid turbulent kinetic energy model. This approach was implemented in the KIVA4 code, and used to model diesel spray combustion within a constant volume chamber. The combustion model uses a direct integration approach with a fast explicit ordinary differential equation (ODE) solver, and is additionally parallelized using OpenMP. The soot mass production within each computation cell was determined using a phenomenological soot formation model developed by Waseda University. This model was combined with the LES code mentioned above, and included the following important steps: particle inception during which acenaphthylene (A2R5) grows irreversibly to form soot; surface growth with driven by reactions with C2H2; surface oxidation by OH radical and O2 attack; and particle coagulation.
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Technical Paper

Spot Friction Welding of Aluminum to Steel

2007-04-16
2007-01-1703
Spot friction welding (SFW) is a cost-effective spot joining technology for aluminum sheets compared with resistance spot welding (RSW) [1]. In this study, coated mild steel was spot friction welded to 6000 series aluminum using a tool with shoulder diameter of 10 mm and welding conditions of 1500-2000 rpm and time of 5 s. Testing showed that tensile shear strength increased as the solidus temperature of the coating on the steel decreased. Microstructure characterizations of steel/Al joint interfaces showed that zinc from the coatings was incorporated into the stir nuggets and that intermetallic phases may have formed but not in continuous layers. Some Al-Zn oxides that appeared to be amorphous were also found in the joint interfaces.
Technical Paper

Measurement of Oxygen Storage Capacity of Three-Way Catalyst and Optimization of A/F Perturbation Control to Its Characteristics

2002-03-04
2002-01-1094
In order to study alternate methods of Air Fuel ratio (A/F) perturbation for maximizing three-way catalyst conversion efficiency, two methods for measuring the Oxygen Storage Capacity (OSC) of Catalyst were developed on an engine test bench. The first is to measure just the break-through Perturbing Oxygen Quantity (POQ, which is defined as the product of A/F amplitude, perturbation period and gas flow), and the second is to measure the response delay of the rear A/F sensor, which has been improved to be very similar to the former. Then, the OSC values of many catalysts were investigated with different perturbation parameters. The results show that OSC would not be affected by amplitude, period of perturbation and gas flow, and that the best conversion efficiency is obtained when the value of POQ is about 1/2 of the value for OSC. These results suggest that the best way to control perturbation is to keep POQ at 1/2 of OSC by setting perturbation parameters.
Technical Paper

Application of Plasma Welding to Tailor- Welded Blanks

2003-10-27
2003-01-2860
In recent years, improving fuel efficiency and collision safety are important issue. We have worked on a new construction method to develop body structure which is light weight and strong/stiff. We adopt multi type Tailor-Welded Blanks (TWB) which is formed after welding several steel sheets for ATENZA (MAZDA 6), NEW DEMIO (MAZDA 2), and RX-8. This is a technology to consistently improve of such product properties and to reduce costs. Laser welding is a common TWB welding method, but for further equipment cost reductions and productivity improvements, we have developed a higher welding speed and robust plasma welding and introduced this to mass production. We introduce this activity and results in this report.
Technical Paper

Development of cabin air filter with aldehyde capture function

2000-06-12
2000-05-0343
Aldehydes are the cause of sick house syndrome or chemical sensitivity and have harmful influences for human beings. In the cabin of vehicle, aldehydes which are included in the volatilization gas from the interior materials, DE emission gas in intake air, cigarette smoke and so on spoil the comfortableness. Active carbon, which has been used as an adsorbent, shows an excellent removal efficiency for most of the gas components by physical adsorption. But for aldehydes, it has difficulty because aldehydes are hard to be adsorbed physically. We have developed new aldehydes adsorbent undergoing addition reaction with gaseous aldehydes on its surface. Aldehydes capture material (ACM) make use of the chemical reaction using a resorcin as a reagent and an H-type zeolite as a water-containing support, and active hydrogen is used as a catalyst to promote the reaction. In addition, we have applied ACM to cabin air filter (CAF) of vehicle.
Technical Paper

Collapse of Thin-Walled Curved Beam with Closed-Hat Section - Part 2: Simulation by Plane Plastic Hinge Model

1990-02-01
900461
This paper describes a calculating method to predict the quasi-static collapsing behaviors of spot-welded closed-hat section curved beams under axial compression. The overall deformat ions and the local buckling modes of beams were calculated using a geometrical model. Force-displacement relations were predicted by a elastic-plastic structural analysis method using the ‘plastic hinge’ concept. Collapsing tests were made on beams which are differenting section size, rotation angle, and metal sheet thickness. Comparisons between the calculated and experimental results of deformed shapes of beams, the local buckling modes and the force displacement relations are discussed.
Technical Paper

A Study of Jump and Bounce in a Valve Train

1991-02-01
910426
Valve train motion was investigated with computer simulation technique. The application of a 5-mass model was found to accurately predict the valve train behavior. It was identified that valve train stiffness and close-side characteristics of valve lift curve have significant effects on bounce occurrence. A valve train with high stiffness tends to develop bounce after jump, while on one with low stiffness, bounce starts in the absence of jump. These findings allowed to develop a new cam form with use of harmonic curves for elevating the revolution limit of the valve train.
Technical Paper

Development of Simultaneous Zinc Phosphating Process for Aluminum and Steel Plates

1993-11-01
931936
A method was studied for simultaneous zinc phosphating on aluminum and steel surfaces to obtain high corrosion resistance on aluminum surfaces, which conventional phosphatic processing could not provide with sufficient corrosion resistance. Since aluminum is protected by an oxide film on its surface, it has poor processability with zinc phosphating solutions applied to steel. An appropriate quantity of fluoride was therefore added to improve processing, and the coating film, aluminum composition and surface conditions were optimized to suppress filiform corrosion, which is characterized by string-like blisters of paint film starting from a paint defect. In addition, in view of the actual production environment, the corrosion resistance of the ground area made for readjustment after stamping was studied for the optimization of the processing solution.
Technical Paper

Analysis in cyclic combustion Variation in a Lean Operating S.I. Engine

1987-02-01
870547
The causes of the cyclic combustion variation in a lean operating SI engine have been identified using multivariate analysis on the pressure-time data. Principal component analysis on the combustion characteristics obtained from the pressure-time data was conducted in order to select an index of an optimal released heat pattern for analyzing the causes of the cyclic combustion variation. Using this index and the released heat quantity, the IMEP variation was subjected to multiple regression analysis to identify the causes of the cyclic combustion variation. Optimizing the fuel injection timing and swirl ratio made it possible to enrich the mixture near the spark plug. With the lean limit thus extended, a SI engine was operated in a lean range, and the resultant pressure-time data were analyzed. It was found that the main cause of the IMEP variation in the lean operating SI engine was the released heat quantity variation.
Technical Paper

Development of Sliding Surface Material for Combustion Chamber of High-Output Rotary Engine

1985-11-11
852176
The present trend of internal combustion engines toward higher-speed and higher-output capacity is pressing the need for improved lubrication of sliding parts in the combustion chamber to secure reliability. To meet this need, investigation into frictional phenomena was made with a rotary engine, which led to the development of a method of coating the inner surface of the rotor housing with fluorocarbon resin superior in self-lubrication and friction resistance. Rotary engines given this surface finishing showed no trace of irregular wear of the sliding surfaces even when subjected, prior to completion of run-in firing (in green condition), to high-speed and high-load tests, indicating this method's noteworthy benefit of improving comformability. This method offers an excellent surface finish for sliding parts of internal combustion engines (rotary and reciprocating) which will gain increasingly higher output in the future.
Technical Paper

Superior Color Matching of Fascia and Body

1987-02-01
870108
To coat flexible parts such as R-RIM Urethane Fascia baked at low temperatures, a different painting approach from one for steel parts is employed. Since paint color differences between the fascia and the body would downgrade the product, a color matching technique is required. For better color matching, matching of color shades was attempted with improvement of paint resin, optimal pigment blending and analysis of how color is affected by varying conditions. Application of a primer for finishing has brought about the desired paint film distinctness. Introduced was also the high weatherablilty paint for plastic parts. All such techniques were utilized on R-RIM Urethane Fascia to achieve high-grade color matching.
Technical Paper

A Study of Exhaust and Noise Emissions Reduction on a Single Spray Direct Injection

1989-02-01
890467
Exhaust and noise emissions were successfully reduced using a Single Spray Direct Injection Diesel Engine (SSDI) on a two-liter naturally-aspirated four-cylinder engine. The compression ratio, the swirl ratio and the pumping rate were optimized to obtain good fuel economy, high power output and low exhaust emissions. Furthermore, through a modification of the fuel injection equipment, hydrocarbon (HC) emissions were reduced. Upon a test vehicle evaluation of this engine, more than 11% fuel savings relative to Mazda two-liter Indirect Injection Diesel Engines (IDI) were obtained. As for engine noise, structural modifications of the engine were carried out to obtain noise emission levels equivalent to IDI.
X