Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Seat Lateral Support Evaluation With SAE Manikin

In this report, we proposed an objective evaluation method of the seat lateral support according to the mechanisms to create the performance differences that we reported previously [1]. First, we showed an effect of scrutinizing Seat Pressure Distribution's change during vehicle turn to gain a quantitative index for explaining subjective evaluation results. Second, we showed the examples of the differences of the results according to the subjects and selected the best-correlated subject among them with a market survey result. Then, we contrived a loading condition to SAE manikin to reproduce the subject's Seat Pressure Distribution. Final, by a specific calculation of the Seat Pressure Distribution, the method to indicate the performance rating that had strong correlation with market survey was clarified.
Technical Paper

Seat Lumbar Support Evaluation With ASPECT Manikin

Seat lumbar support is thought to be essential for seating comfort as it plays important role in the driver's fatigue during long term driving. We tried to evaluate the lumbar support performance objectively with Seat Pressure Distribution. First, the tolerance in the measurement was eliminated by application of ASPECT manikin that reproduced a human seating torso posture [1, 2]. Second, an analysis method to visualize the seat support balance on the human back was developed. Third, a hypothesis for the optimal support balance to minimize the fatigue was proposed according to the fatigue growing mechanisms. Examining the deviation of each seat result from the optimal support, the performances were quantitatively evaluated. In addition to that, the effect of the lumbar support adjuster was taken into consideration to predict the market evaluation more precisely.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Aerodynamics Evaluation of Road Vehicles in Dynamic Maneuvering

A road vehicle’s cornering motion is known to be a compound motion composed mainly of forward, sideslip and yaw motions. But little is known about the aerodynamics of cornering because little study has been conducted in this field. By clarifying and understanding a vehicle’s aerodynamic characteristics during cornering, a vehicle’s maneuvering stability during high-speed driving can be aerodynamically improved. Therefore, in this study, the aerodynamic characteristics of a vehicle’s cornering motion, i.e. the compound motion of forward, sideslip and yaw motions, were investigated. We also considered proposing an aerodynamics evaluation method for vehicles in dynamic maneuvering. Firstly, we decomposed cornering motion into yaw and sideslip motions. Then, we assumed that the aerodynamic side force and yaw moment of a cornering motion could be expressed by superposing linear expressions of yaw motion parameters and those of sideslip motion parameters, respectively.
Technical Paper

Planar Measurements of NO in an S.I. Engine Based on Laser Induced Fluorescence

To investigate NO formation in a combustion flame, PLIF (Planar Laser-Induced-Fluorescence) technique was applied to measure the NO fluorescence distribution in a constant-volume combustion chamber and in a sparkignition engine. The NO fluorescence distribution was taken by an image intensified CCD camera. In the constant-volume combustion chamber, the high NO fluorescence intensity was concentrically observed in the thin flame zone along the flame front. In postflame gas behind the flame zone, the NO fluorescence was widely distributed with weak intensity. In the case of the engine, the fluorescence was distributed in the broad flame zone. The fluorescence intensity had high value near the flame front, and decreased from the flame front to the postflame gas. As the equivalence ratio was changed, the fluorescence intensity reached maximum value at slightly lean condition.
Technical Paper

Vaporization and Turbulence Characteristics of High Pressure Gasoline Sprays Impinging on a Wall

To get a better understanding of the characteristics of the high pressure gasoline sprays impinging on a wall, a fundamental study was conducted in a high-temperature high-pressure constant volume vessel under the simulated engine conditions of in-cylinder pressures, temperatures, and wall temperatures. The injection pressure was varied from 20 to 120 MPa. The spray tip penetration, vapor mass distribution, and vaporization rate were quantitatively measured with the laser absorption-scattering (LAS) technique. The velocity fields of the wall-impinging sprays under vaporizing conditions were measured with the particle image velocimetry (PIV) technique using silicone oil droplets as tracers. The effects of injection pressure and spray/wall interactions on spray characteristics were investigated. The results showed that the increased injection pressure improved penetration, vaporization, and turbulence of the sprays.