Refine Your Search

Topic

Search Results

Journal Article

High-Speed Flow and Combustion Visualization to Study the Effects of Charge Motion Control on Fuel Spray Development and Combustion Inside a Direct-Injection Spark-Ignition Engine

2011-04-12
2011-01-1213
An experimental study is performed to investigate the effects of charge motion control on in-cylinder fuel-air mixture preparation and combustion inside a direct-injection spark-ignition engine with optical access to the cylinder. High-pressure production injector is used with fuel pressures of 5 and 10 MPa. Three different geometries of charge motion control (CMC) device are considered; two are expected to enhance the swirl motion inside the engine cylinder whereas the third one is expected to enhance the tumble motion. Experiments are performed at 1500 rpm engine speed with the variation in fuel injection timing, fuel pressure and the number of injections. It is found that swirl-type CMC devices significantly enhance the fuel-air mixing inside the engine cylinder with slower spray tip penetration than that of the baseline case without CMC device. Combustion images show that the flame growth is faster with CMC device compared to the similar case without CMC device.
Journal Article

Stress Analysis of the Separator in a Lithium-Ion Battery

2011-04-12
2011-01-0670
A separator is a membrane that prevents the physical contact between the positive and negative electrodes while enabling ionic transport. The integrity of the separator is vital to the performance and reliability of a battery. This paper presents finite element stress analysis for the separator in a lithium-ion battery using a macro-scale battery cell model. In this model, the porous electrodes were treated as homogenized media and represented with the effective properties estimated using the rule of mixtures. To compute the deformation due to lithium (Li) intercalation & deintercalation and temperature variation, the Li concentration distribution and temperature change due to electrochemical reactions must be known. These parameters were computed using a multi-physics model in COMSOL and mapped to the macro-scale model in ANSYS. Numerical simulations were conducted to identify the locations and magnitudes of the maximum strain and stress of the separator in the pouch cell.
Technical Paper

Effects of Changing Ambient Humidity and Temperature on the Emissions of Carbureted Two- and Four-Stroke Hand-Held Engines

1997-09-08
972707
Effects of changing ambient humidity and temperature have been studied on the performance and emissions of a hand-held two-stroke and a hand-held four-stroke engine. The main effect of changes in ambient conditions is to change the intake air density and therefore the air-fuel ratio metered by the carburetor. Trends in the effects of humidity and temperature on emissions are predicted reasonably well by theoretical thermodynamic models. They suggest an improved correction for the dependence of NOx on ambient conditions, as a function of both humidity and operational air-fuel ratio, which appears to collapse NOx production data better than the existing KH correction factor. They also suggest a simple procedure for tuning engines to design air-fuel ratios using the measured exhaust-gas %CO, which takes into account the prevailing ambient conditions.
Technical Paper

Some Effects of Spark Plug Electrode Geometry and Orientation on Small-Engine Emissions

1998-09-14
982057
In the design of small off-highway and utility engines for compliance with increasingly stringent emissions standards, one component which can potentially reduce engine exhaust-gas emissions without necessitating changes in other, more costly parts is the spark plug. From studies carried out in automobile engines, benefits have been reported when using different spark-plug electrode shapes or when aligning the plugs in the cylinder head in preferred directions. However, these benefits, observed in automotive overhead valve engines with well-mixed charges, have generally been modest? and spark plugs of conventional shape remain the most widely used today. In the case of off-highway and utility engines, which operate at substantially higher air-fuel ratios, often with poorly-mixed charges, the potential for improving performance by changing spark-plug shape has not been explored.
Technical Paper

Quantification of primary flows of a torque converter using laser doppler velocimetry

2000-06-12
2000-05-0106
All modern automotive automatic transmissions require the use of a torque converter to allow for the transmission of torque from the engine to the drivetrain. Although they are commonly used throughout the automotive industry, there is little understanding of the internal flows within the torque converter. An experimental study has been conducted to reveal the internal flow characteristics within a production torque converter using Laser Doppler Velocimetry (LDV) under the operating conditions. LDV measurements were conducted on the planes between impeller blades, and the gap between the impeller and turbine blades. The study showed that the internal flow is highly complex and the difference in rotor speeds between the impeller and turbine compound the flow effects. Transmission oil flows in the planes at the impeller exit and gap region were affected by the turbine blade as it passed.
Technical Paper

A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems

2010-10-25
2010-01-2263
This paper reviews progress on turbulent jet ignition systems for otherwise standard spark ignition engines, with focus on small prechamber systems (≺3% of clearance volume) with auxiliary pre-chamber fueling. The review covers a range of systems including early designs such as those by Gussak and Oppenheim and more recent designs proposed by General Motors Corporation, FEV, Bosch and MAHLE Powertrain. A major advantage of jet ignition systems is that they enable very fast burn rates due to the ignition system producing multiple, distributed ignition sites, which consume the main charge rapidly and with minimal combustion variability. The locally distributed ignition sites allow for increased levels of dilution (lean burn/EGR) when compared to conventional spark ignition combustion. Dilution levels are comparable to those reported in recent homogeneous charge compression ignition (HCCI) systems.
Technical Paper

An Electronically Tunable Resonator for Noise Control

2001-04-30
2001-01-1615
Many engineering systems create unwanted noise that can be reduced by the careful application of engineering noise controls. When this noise travels down tubes and pipes, a tuned resonator can be used to muffle noise escaping from the tube. The classical examples are automobile exhaust and ventilation system noise. In these cases where a narrow frequency band of noise exists, a traditional engineering control consists of adding a tuned Helmholtz resonator to reduce unwanted tonal noise by reflecting it back to the source (Temkin, 1981). As long as the frequency of the unwanted noise falls within the tuned resonator frequency range, the device is effective. However, if the frequency of the unwanted sound changes to a frequency that does not match the tuned resonator frequency, the device is no longer effective. Conventional resonators have fixed tuning and cannot effectively muffle tonal noise with time-varying frequency.
Technical Paper

Fiber Optic Imaging System for Remote Location Flow Visualization Studies

1992-02-01
920305
The purpose of this work was to develop a fiber optic imaging system for use in flow visualization studies at the Michigan State University Engine Research Laboratory. A flexible fiber optic image carrier was coupled with a high speed rotating prism camera to create a unique imaging system which can easily reach remote location test sites. The flow visualization study was conducted on a motored 3.5 L four-valve engine test rig. A 40 watt pulsed copper vapor laser was synchronized with the camera to produce motion picture film at 5000 frames per second (fps). The image carrier which is attached to the camera contained an 80 degree field of view (FOV) tip adapter for viewing the entire cross-sectional area of the cylinder. The area imaged was a radial plane located 3 cm from the intake valves. The engine rig was motored at 850 rpm with a flow rate of 18 kg/hr. Entrained microballoon seeding particles were filmed as they traveled through the cylinder.
Technical Paper

A Demonstration of Simultaneous Infrared and Visible Imaging Techniques with Pressure Data in an Optically Accessible Diesel Engine Operating at Part Load with High EGR

2011-04-12
2011-01-1395
This work presents a method for simultaneously capturing visible and infrared images along with pressure data in an optical Diesel engine based on the International 4.5L VT275 engine. This paper seeks to illustrate the merits of each imaging technique for visualizing both in-cylinder fuel spray and combustion. The engine was operated under a part load, high simulated exhaust gas recirculation operating condition. Experiments examining fuel spray were conducted in nitrogen. Overlays of simultaneously acquired infrared and visible images are presented to illustrate the differences in imaging between the two techniques. It is seen that the infrared images spatially describe the fuel spray, especially fuel vapors, and the fuel mixing process better than the high-speed visible images.
Technical Paper

New Biomechanical Models for Automobile Seat Design

1993-03-01
930110
New models are being developed to represent the geometry and movements of people in seated postures. The positions and motions of the torso skeletal structures for different amounts of lumbar curvature have been studied and represented in side view, two dimensional computer models of the average man, small woman, and large man. Some further developments for the average man include: 1. two dimensional, articulated drafting template, 2. three dimensional computer model of the skeletal system with soft tissue thicknesses added to represent the external body contours on the back of the torso, and 3. model of forces and moments between body segments based on seated posture, body segment masses, and seat surface forces. This paper describes these new biomechanical models and their potential uses in designing seats that more comfortably fit and move with people.
Technical Paper

Use of Expert Systems for Life Cycle Analysis

1993-03-01
930558
As environmental regulations become more stringent, manufacturers are confronted with the task of product-design considering environmental impacts. Life Cycle Analysis (LCA) is a developing technique that attacks this problem. LCAs provide environmental information for decision making by consumers, manufacturers, and governments. These decisions significantly affect the ability to maximize source reduction, re-use, recyclability, and recycled content. LCAs can aid in diminishing the negative impact a product has on the environment and can be utilized as a partial solution of our nations' (worlds') growing waste management problem. To date, the application of LCAs has varied from product comparison to process development and improvement. The results from these analyses have differed because of differing assumptions and differing choices of boundary conditions. An appropriate Life Cycle Analysis should be consistent across products, locations, and especially across experimenters.
Technical Paper

An Experimental Study of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine by High Speed Flow Visualization and Two-Component LDV Measurement

1993-03-01
930478
In-cylinder flows in four-valve SI engines were examined by high frame rate flow visualization and two-component LDV measurement. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence later in the cycle. The exact nature of this relationship is not well known. However, control of the turbulence offers control of the combustion process. To develop a better physical understanding of the in-cylinder flow, the effects of the cylinder head intake port configuration and the piston geometry were examined. For the present study, a 3.5L, four-valve engine was modified to be mounted on an AVL single cylinder research engine type 520. A quartz cylinder was fabricated for optical access to the in-cylinder flow. Piston rings were replaced by Rulon-LD rings. A Rulon-LD ring is advantageous for the optical access as it requires no lubrication.
Technical Paper

Fire Ring Wear Analysis for a Piston Engine

1993-03-01
930797
Ring wear may not be a problem in most current automotive engines. However, a small alteration in the ring face geometry can significantly affect the hydrodynamic lubrication characteristics of the ring. This in turn can cause excessive frictional losses and blowby in an engine. As engines become more compact and highly loaded, ring wear is likely to be more severe than in current engines. In order to assess the effect of ring loading, a piston ring wear model has been developed through the use of ring dynamics analysis with the assumption of a linear relationship between ring wear and the friction work applied on the surface of the ring. This ring wear analysis clearly shows that the higher the engine speed, the lower the wear rates at the same power output. This finding is consistent with the limited experimental data available.
Technical Paper

On the Dynamic Response of Hydraulic Engine Mounts

1993-05-01
931321
Hydraulic engine mounts are used in the automotive industry because they offer frequency and amplitude response characteristics superior to the conventional elastomeric engine mount. This response is well established but is not fully understood. Numerous articles have attempted to explain the complex behavior of these mounts using linear theory. This paper uses the same linear models developed in previous papers, but offers a more fundamental explanation of the system response using these previously derived two degree of freedom models. In addition, the source of engine vibrations and their corresponding frequency ranges are explained in detail. Techniques borrowed from control systems are used to interpret system response and terminology used in the automotive industry to describe the behavior of hydraulic engine mounts is clarified. Validation of the two degree of freedom model is made by comparison with experimental data.
Technical Paper

Identification of Internal Loss Factors During Statistical Energy Analysis of Automotive Vehicles

1993-05-01
931300
Statistical Energy Analysis (SEA) is a useful tool for predicting the transmission of noise and vibration through the structures of automotive vehicles. This work discusses the identification of SEA internal loss factor parameters from experimental measurements of vehicle sound pressure levels and structural accelerations. A simple automotive vehicle SEA model can be constructed from elements idealized as uniform beams, flat plates and acoustic volumes. Such an SEA automotive vehicle model can accurately predict the vibro-acoustic response of an automotive vehicles when appropriate equivalent SEA parameters are identified from in situ experimental data. This paper will present an algorithm for identifying internal loss factors for SEA models. The paper will include an example of the application of the algorithm to identification of automotive vehicle internal loss factors from measured vehicle response data.
Technical Paper

Application of LIPA (Laser Induced Photochemical Anemometry) to the Water Analog Model of a Four-Stroke IC Engine

1994-03-01
940282
Our research contributes to the overall attempt to gain knowledge of the fluid dynamical processes in engines by applying a new measurement technique called LIPA (Laser Induced Photochemical Anemometry). It concentrates on detecting fundamental flow and mixing mechanisms by performing experiments on the induction stroke in an axisymmetric motored water analog model of a four stroke IC engine. We present results of the investigations done at an engine speed of 20 RPM in water (corresponding to 340 RPM in air) at three different valve lifts (3, 6, and 9 mm). Maps containing velocity vectors depict in 2D a toroidal recirculation pattern that scales with cylinder volume and they suggest that the recirculation pattern possesses the highest degree of order -- thus least mixing -- for 9 mm valve lift and the lowest for 3 mm valve lift. A fluid dynamic model on the basis of freestream jet characteristics has been proposed to account for this phenomenon.
Technical Paper

3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine

1995-02-01
950648
In-cylinder flows in a motored four-valve SI engine were examined by simultaneous three-component LDV measurement. The purpose of this study was to develop better physical understanding of in-cylinder flows and quantitative methods which correlate in-cylinder flows to engine performance. This study is believed to be the first simultaneous three-component LDV measurement of the air flow over a planar section of a four-valve piston-cylinder assembly. Special attention is paid to the tumble formation process, three-dimensional turbulent kinetic energy, and measurement of the tumble ratio. The influence of the induction system and the piston geometry are believed to have a significant effect on the in-cylinder flow characteristics. Using LDV measurement, the flows in two different piston top geometries were examined. One axial plane was selected to observe the effect of piston top geometries on the flow field in the combustion chamber.
Technical Paper

Dynamic Flow Study in a Catalytic Converter Using Laser Doppler Velocimetry and High Speed Flow Visualization

1995-02-01
950786
Internal flow characteristics of a close coupled catalytic converter were examined by LDV measurements and high speed flow visualization. Although previous studies have been done on catalytic converters, they were conducted at steady state and using water flow seeded with a small quantity of tracer particles. The purpose of this study was to develop a better understanding of dynamic flows inside catalytic converters. The high speed flow visualization films and LDV results showed that areas of separation and circulation were present in the inlet region of the converter. Backflows into the neck of the converter were also observed. Each cylinder exhausted into a different region of the converter, with the front-middle region having the heaviest amount of flow. Large bursts of flow were created by each cylinder, while other regions of the inlet region showed backflows or very low flow rates. The midsection of the converter had a more uniform overall flow pattern.
Technical Paper

Design and Analysis of a Hybrid Electric Vehicle Chassis

1995-02-01
950179
Design of a hybrid electric vehicle chassis for the 1993 and 1994 HEV Challenge is presented. Computer finite element modeling and solid modeling techniques were used in developing the chassis. The main design parameters are presented and described. Final chassis design was tested, using finite element analysis, to ensure overall structural integrity and occupant safety. The chassis proved to be safe and reliable, under the rigors of competition driving, in the 1993 and 1994 HEV Challenges.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
X