Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

2016-09-27
2016-01-8082
The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Technical Paper

Extended Kalman Filter to Estimate NO, NO2, Hydrocarbon and Temperatures in a DOC during Active Regeneration and Under Steady State Conditions

2015-04-14
2015-01-1059
Diesel Oxidation Catalysts (DOC) are used on heavy duty diesel engine applications and experience large internal temperature variations from 150 to 600°C. The DOC oxidizes the CO and HC in the exhaust to CO2 and H2O and oxidizes NO to NO2. The oxidation reactions are functions of its internal temperatures. Hence, accurate estimation of internal temperatures is important both for onboard diagnostic and aftertreatment closed loop control strategies. This paper focuses on the development of a reduced order model and an Extended Kalman Filter (EKF) state estimator for a DOC. The reduced order model simulation results are compared to experimental data. This is important since the reduced order model is used in the EKF estimator to predict the CO, NO, NO2 and HC concentrations in the DOC and at the outlet. The estimator was exercised using transient drive cycle engine data. The closed loop EKF improves the temperature estimate inside the DOC compared to the open loop estimator.
X