Refine Your Search

Topic

Author

Search Results

Technical Paper

Catalytic Oxidation Model Development of the Volatile Reactor Assembly Unit of the International Space Station Water Processor

1995-07-01
951630
The destruction of organic contaminants in waste water for closed systems, such as that of the International Space Station, is crucial due to the need for recycling the waste water. A cocurrent upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. This paper addresses the development of a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate.
Technical Paper

Ion Exchange Model Development for the International Space Station Water Processor

1995-07-01
951628
A mathematical model is presented for analysis and optimization of the ion exchange beds in the International Space Station (ISS) Water Processor. The model consists of a physical properties database, an equilibrium description for binary and multicomponent ion exchange, and a kinetic description for ion exchange beds in the Water Processor. The ion exchange model will be verified for an Ersatz water designed to mimic the ISS shower/handwash waste stream.
Technical Paper

Mathematical Modeling of Adsorption Processes for the International Space Station Water Processor

1995-07-01
951629
A mathematical model is presented for analysis and optimization of the adsorbents in the multifiltration beds contained in the International Space Station (ISS) water processor. The model consists of a physical properties database, an equilibrium description for single and multicomponent adsorption, and a kinetic description for adsorption beds in the water processor. The model is verified on a surrogate mixture designed to mimic the adsorption potential of the ISS shower/handwash waste stream.
Technical Paper

Computer Simulation of Refrigerant Vapor Condenser in Transient Operation

1995-02-01
951014
The formulation of mathematical model for the computational simulation of transient temperature response and phase change of refrigerant in a vapor condenser of an automotive air conditioning unit is described. A demonstrative computational simulation of a sample air cooled vapor condenser charged with Freon 12 is presented. The computational analysis predicts an initial surge and followed by an oscillation of the condensate outflow rate from the condenser when the air-conditioning unit is started, and the tube length required for complete condensation of inflow vapor is a maximum value at start up. The rise of the temperatures of the condenser tubes and cooling air flow during the start-up and load change operations rate found to be gradual but the scale of these temperature changes are considered small.
Technical Paper

A Methodology for Rapid Calculation of Computational Thermal Models

1995-02-01
951012
Too often many heat management problems are not solved with thermal analysis because of excessive complexity, time, and cost. A method for quickly solving a sophisticated thermal/fluid system with minimal user interaction and with common desktop computer resources is presented. A desktop (Microsoft Windows™) thermal analysis package, WinTherm, consists of the Generic Processor (pre-processing software), the 3-D Thermal Model (a finite difference nodal network solver), and an Image Viewer (wireframe and animated thermal display). The theoretical basis for this thermal analysis toolkit will be discussed as well as examples of its implementation.
Technical Paper

Spray Characteristics of Compound Silicon Micro Machined Port Fuel Injector Orifices

1995-02-01
950510
Steady state and dynamic spray characteristics of compound silicon micro machined port fuel injector orifices have been analyzed. Primary interest was placed on the Sauter mean diameter and the spray distribution. Orifice design parameters that influence droplet size and spray distribution were identified. The influence of injection pressure was investigated. The results of this investigation indicate that spray characteristics can be controlled by orifice geometry. Peak dynamic droplet sizes have been found to be significantly larger than steady state droplet sizes. Moderate increases in injector line pressure reduce spray droplet size without significantly affecting spray distribution.
Technical Paper

Variation of Friction in a Strip Test Apparatus with Controllable Drawbead Penetration

1995-02-01
950698
The Michigan Tech sheet metal strip test apparatus with controllable drawbead penetration simultaneously performs two different tests for friction coefficient. The flat binder coefficient of friction and die shoulder coefficient of friction are complex functions of sheet tension, surface topography, lubrication, and sliding distance. The average coefficient of friction for the drawbead and blankholder region at maximum drawbead penetration can be predicted by taking the average of the binder coefficient of friction and the die shoulder coefficient of friction.
Technical Paper

Strain Path Effects on the Modified FLD Caused by Variable Blank Holder Force

1995-02-01
950695
The objective in this research is to investigate the effects of variable blank holder force (VBHF) on the material formability, due to its effect on the strain path. It is found in a recent study [9] that VBHF does not significantly affect the overall trend of the strain path. This strain path in deep drawing process is linear for the materials in the flange and under punch face, and is roughly bi-linear for the material around the punch nose. The second segment of the strain path in the punch nose region is plane-strain. VBHF, however, affects the strain ratio ρ1 = ε2/ε1 of the first segment of the bi-linear strain path. These effects, especially ρ1, on limit strain were studied using M-K method. A strain path dependent modified forming limit diagram (MFLD) was calculated based on the actual strain path. It is found that the MFLD is strongly dependent on ρ1.
Technical Paper

Fuel Film Dynamics in the Intake Port of a Fuel Injected Engine

1994-03-01
940446
Up to 80 percent of the total hydrocarbons emitted during the EPA Federal emissions test are produced in the first five minutes of this procedure. It has been theorized that this is in part due to wall wetting of the intake port and cylinder. This study measures the behavior of the fuel film thickness in the intake port during cold starting, steady state and transient operation. Three injector spray patterns with varying droplet sizes were utilized for the tests. The fuel film thickness in the intake port of a Ford 1.9L engine was measured using optical sensors. It was found that the spray pattern and droplet size affected the port wall wetting characteristics.
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

1994-10-01
942068
This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
Technical Paper

Automated Radiation Modeling for Vehicle Thermal Management

1995-02-01
950615
A fast, semi-automated method for visualizing the time-varying effects of radiative heat transfer, including obscuration and multiple reflections, is presented. Starting with a finite element surface description, an analyst assigns “groups” to a model by indicating which elements have the same material and surface properties. The elements within each group are combined into isothermal nodes. View factors are then calculated using a variant of the hemi-cube method. Transient nodal temperatures are calculated using an implicit solution to the finite difference equations derived from the thermal properties of each node and the radiation exchange between nodes.
Technical Paper

Effects of an Oxidation Catalytic Converter on Regulated and Unregulated Diesel Emissions

1994-03-01
940243
In this study, the effects of an oxidation catalytic converter (OCC) on regulated and unregulated emissions from a 1991 prototype Cummins I.10-310 diesel engine fueled with a 0.01 weight percent sulfur fuel were investigated. The OCC's effects were determined by measuring and comparing selected raw exhaust emissions with and without the platinum-based OCC installed in the exhaust system, with the engine operated at three steady-state modes. It was found that the OCC had no significant effect on oxides of nitrogen (NOX) and nitric oxide (NO) at any mode, but reduced hydrocarbon (HC) emmissions by 60 to 70 percent. The OCC reduced total particulate matter (TPM) levels by 27 to 54 percent, primarily resulting from 53 to 71 percent reductions of the soluble organic fraction (SOF). The OCC increased sulfate (SO42-) levels at two of the three modes (modes 9 and 10), but the overall SO42- contribution to TPM was less than 6 percent at all modes due to the low sulfur level of the fuel.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
Technical Paper

Modeling of Early Pressure Rise and Flame Growth in a Spark Ignition Engine

1994-10-01
941930
A thermodynamical model of the ignition and flame growth process was developed to understand and minimize cycle-to-cycle variations in pressure due to minor differences in flame kernel growth at the spark plug electrode between cycles. Initial flame kernel size after the spark breakdown process was determined by solving the one-dimensional cylindrical shock flow equation. Overall reaction rates, flame speeds including turbulence and intensity, high temperature equilibrium and other thermodynamic properties were calculated by peripheral sub-models. Relative effects of spark power, heat loss to the spark plug, and the chemical heat release were studied under varying engine conditions. Results show that breakdown energy has a significant effect on the formation and size of the initial kernel and that the effect of flame kernel velocity on subsequent combustion was considerable at specific engine conditions.
Technical Paper

The Influence of an Oxidation Catalytic Converter and Fuel Composition on the Chemical and Biological Characteristics of Diesel Exhaust Emissions

1992-02-01
920854
The U.S. Bureau of Mines and Michigan Technological University are collaborating to conduct laboratory evaluations of oxidation catalytic converters (OCCs) and diesel fuels to identify combinations which minimize potentially harmful emissions. The purpose is to provide technical information concerning diesel exhaust emission control to the mining industry, regulators, and vendors of fuel and emission control devices. In this study, an Engelhard PTX 10 DVC (Ultra-10)* OCC was evaluated in the exhaust stream of an indirect injection Caterpillar 3304 PCNA mining engine using a light-duty laboratory transient cycle. This cycle was selected because it causes high emissions of particle-associated organics. Results are also reported for two different fuels with similar sulfur contents (0.03-0.04 wt pct) and a cetane number of 53, but different aromatic contents (11 vs. 20 wt pct).
Technical Paper

A Proposed LCA Model of Environmental Effects With Markovian Decision Making

1997-04-08
971174
As the pool of existing non-renewable natural resources continues to shrink, it will be necessary for government and industrial leaders to achieve a workable strategy for the intelligent allocation of scarce resources. In this paper, a method of quantifying the environmental and resource impacts of product redesign is proposed. This new method utilizes Input Output Analysis coupled with the Markovian decision making into a single matrix-based tool. The benefit of a fully developed tool would be the ability to make informed pre-production decisions leading to optimum product and process designs with minimal environmental impact. This paper illustrates this technique with an example based upon real industry data and extrapolated effects.
Technical Paper

The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosine Based Aviation Fuel

1997-09-08
972737
This study examines the feasibility of broadening the fuel capabilities of a direct-injected two-stroke engine with stratified combustion. A three cylinder, direct-injected two-stroke engine was modified to operate on JP-5, a kerosene-based jet fuel that is heavier, more viscous, and less volatile than gasoline. Demonstration of engine operation with such a fuel after appropriate design modifications would significantly enhance the utilization of this engine in a variety of applications. Results have indicated that the performance characteristics of this engine with jet fuel are similar to that of gasoline with respect to torque and power output at low speeds and loads, but the engine's performance is hampered at the higher speeds and loads by the occurrence of knock.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

1998-02-23
980818
The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

A Study of the Effects of Exhaust Gas Recirculation on Heavy-Duty Diesel Engine Emissions

1998-05-04
981422
The effects of exhaust gas recirculation (EGR) on heavy-duty diesel emissions were studied at two EPA steady-state operating conditions, old EPA mode 9* (1800 RPM, 75% Load) and old EPA mode 11 (1800 RPM, 25% Load). Data were collected at the baseline, 10% and 16% EGR rates for both EPA modes. The study was conducted using a 1995 Cummins M11-330E heavy-duty diesel engine and compared to the baseline emissions from the Cummins 1988 and 1991 L10 engines. The baseline gas-, vapor- and particle-phase emissions were measured together with the particle size distributions at all modes of operation. The total particulate matter (TPM) and vapor phase (XOC) samples were analyzed for physical, chemical and biological properties. The results showed that newer engines with electronic engine controls and higher injector pressures produce TPM decreases from the 1988 to 1991 to 1995 engines with the solids decreasing more than the soluble organic fraction (SOF) of TPM.
Technical Paper

Computational Design of Experiments for Compound Fuel Injector Nozzles

1997-05-01
971617
A computational design of experiments was constructed to analyze two basic nozzle designs. Several geometric features of the nozzles such as cavity height, exit orifice area, turbulence generator area and exit orifice position in addition to the pressure differential across the injector were used in a 2k factorial design study. Performance characteristic which were analyzed in an analysis of variance study included the discharge coefficient. atomization efficiency and predicted spray pattern. The computational design of experiments revealed which of the studied parameters had the greatest influence on a given nozzle performance characteristic. These results were compared to a similar investigation which was later performed experimentally from which similar conclusions were drawn.
X