Refine Your Search

Topic

Author

Search Results

Technical Paper

Measurement of Structural Attenuation of a Diesel Engine and its Applications for Reduction of Noise and Vibration

1991-11-01
912710
Structural attenuation of a running diesel engine measured by a new technique showed a constant value regardless of engine speeds. It was verified by this result that structural attenuation is a physical quantity unique to the structure of each engine and, therefore, a good indicator for evaluation of low noise engine structure. In addition, a hydraulic excitation test rig was devised to measure structural attenuation directly and to make effective use of it for noise reduction. Based on the accurate measurements by the excitation test rig, modal analysis and system simulation were conducted for implementation of countermeasures against noise.
Technical Paper

Fuel Injection Control Systems that Improve Three Way Catalyst Conversion Efficiency

1991-02-01
910390
A fuel control method to reduce the harmful exhaust gas from SI engines is proposed. As is well known, both the amplitude and the frequency of the limit cycle in a conventional air-fuel ratio control system are determined uniquely by parameters in the system. And this limits our making full use of the oxygen storage effect of TWC. A simple model of TWC reaction revealed the relationship between maximum conversion efficiency and both the amplitude and the frequency in a air fuel control system. It also revealed that TWC conversion efficiency attained to maximum levels when both the amplitude and the frequency of the limit cycle are selected so as to make full use of the oxygen storage effect of TWC. In order to achieve this, it is necessary to vary both the amplitude and the frequency arbitrarily.
Technical Paper

Reduction of Idling Rattle Noise in Trucks

1991-05-01
911044
Optimization of the clutch torsional characteristics is one of the effective methods to reduce the idling rattle noise. Many researches on th.s problem have been reported, but only few of them give sufficient consideration to the drag torque applied to the clutch disc during engine idling. This paper pays attention to the drag torque and discusses the mechanism of idling rattle noise by using vehicle testing, bench test with rotating torsional exciter and computer simulation. Reauction of Idling
Technical Paper

Optimized Gasoline Direct Injection Engine for the European Market

1998-02-23
980150
GDI (Gasoline Direct Injection) engine adopting new combustion control technologies was developed and introduced into Japanese domestic market in August of 1996. In order to extend its application to the European market, various system modifications have been performed. Injectors are located with a smaller angle to the vertical line in order to improve the combustion stability in the higher speed range. A new combustion control method named “two-stage mixing” is adopted to suppress the knock in the low speed range. As a result of this new method, the compression ratio was increased up to 12.5 to 1 while increasing the low-end torque significantly. Taking the high sulfur gasoline in the European market into account, a selective reduction lean-NOx catalyst with improved NOx conversion efficiency was employed. A warm-up catalyst can not be used because the selective reduction lean NOx catalyst requires HC for the NOx reduction.
Technical Paper

New Mitsubishi L4 5-Liter DI Diesel Engine

1998-11-16
982800
The 4M5 series of four-cylinder, in-line, direct-injection diesel engines has been released by Mitsubishi Motors Corporation for light and medium-duty trucks and buses. Featuring an updated structure and reflecting the employment of state-of-the-art technology in the design of every component, the new engine series offers high reliability and compact dimensions. Moreover, the new series well meets contemporary demands for high performance, low noise, and clean combustion.
Technical Paper

Powertrain Model Selection and Reduction for Real Time Control Algorithm Design and Verification in Rapid Controller Prototyping Environment

2010-04-12
2010-01-0236
New systems or functionalities have been rapidly introduced for fuel economy improvement. Active vibration suppression has also been introduced. Control algorithm is required to be verified in real time environment to develop controller functionality in a short term. Required frequency domain property concept is proposed for representation of target phenomena with reduced models. It is shown how to select or reduce engine, transmission and vehicle model based on the concept. Engine torque profile which has harmonics of engine rotation is required for engine start, take-off from stand still, noise & vibration suppression and misfire detection for OBD simulation. An engine model which generates torque profile synchronous to crank angle was introduced and modified for real time simulation environment where load changes dynamically. Selected models and control algorithms were modified for real time environment and implemented into two linked universal controllers.
Technical Paper

Mixing Control and Combustion in Gasoline Direct Injection Engines for Reducing Cold-Start Emissions

2001-03-05
2001-01-0550
A two-stage combustion is one of the Mitsubishi GDI™ technologies for a quick catalyst warm-up on a cold-start. However, when the combustion is continued for a long time, an increase in the fuel consumption is a considerable problem. To solve the problem, a stratified slight-lean combustion is newly introduced for utilization of catalysis. The stratified mixture with slightly lean overall air-fuel ratio is prepared by the late stage injection during the compression stroke. By optimizing an interval between the injection and the spark timing, the combustion simultaneously supplies substantial CO and surplus O2 to a catalyst while avoiding the soot generation and the fouling of a spark plug. The CO oxidation on the catalyst is utilized to reduce the cold-start emissions. Immediately after the cold-start, the catalyst is preheated for the minimum time to start the CO oxidation by using the two-stage combustion. Following that, the stratified slight-lean combustion is performed.
Technical Paper

Booming noise analysis of passenger car using integrated approach of CAT/CAE

2000-06-12
2000-05-0293
The need of lightweight vehicle design is motivated by the recent global trend of less fuel consumption and lower emission in vehicle. However in NVH development of vehicle, it becomes more difficult for the lightweight vehicle to reach low vibro-acoustic sensitivity than, for the heavy weight one to do so. Inthis environment, this paper describes about the practical finite element (FE) modeling of vehicle structure and acoustics, in order to predict "boom" response to powertrain excitation. The FE modeling process through validation and updating with experimental mode makes, the accumulation of considerable expertise for improving prediction accuracy, possible. FE analysis based on this modeling process is so useful for predicting "boom" levels up to 200 Hz. Using the result of FE analysis, structural optimization is executed in order to improve "boom" level of 80 Hz.
Technical Paper

Development of Advanced Emission-Control Technologies for Gasoline Direct-Injection Engines

2001-03-05
2001-01-0254
An extensive effort has been made, at Mitsubishi Motors, in the technology field of new catalysts and of the catalyst reaction control for the purpose of further improvement of the emission control with the GDI engines [1-2]. A new NOx-trap catalyst has been developed to satisfy the required higher catalyst performance under high-temperature condition. The new catalyst contains potassium (K) of excellent NOx-storage capacity under high-temperature region in the catalytic atmosphere, and to retain K stability zeolite is mixed in the catalyst layer as well as the substrate is coated with silica (SiO2). This new catalyst has been proven of the improved NOx conversion efficiency, and solved the long-pending problems particularly those experienced under high-temperature operation.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

Acoustic Analysis of Truck Cab

1991-05-01
911075
This paper presents the results of acoustic analyses of light duty truck cabs by actual vehicle testing and by numerical analysis utilizing the boundary element method (BEM). In the resonance mode analysis using BEM, by taking into account the vibration characteristics of cab panels, the presence of the modes other than the purely acoustic cavity resonance modes were confirmed. The contribution of the panel vibrations to booming noise that occurs in actual light duty trucks was analyzed. BEM analysis showed that some of the panel vibration had a negative contribution to booming noise. In other words, decreasing vibration in such a section was shown to increase sound pressure. The results of the BEM analysis match well with actual test results. It has thus been demonstrated that BEM is an effective method for analyzing truck interior noise reduction.
Technical Paper

A New Oxygen Storage Componented Oxygen Sensor for the Emission Reductions of the Three-Way Catalyst System

1990-10-01
902120
A new prototype oxygen storage componented oxygen sensor has been developed which shows significant emission reductions of a 3-way catalyst system. This sensor is composed of ceria, as an oxygen storage component and supported pellets as a buffer layer surrounding the protective coating of the sensor element. This sensor offers a more rapid response than conventional ones under lean and rich fuel mixture excursions, which is caused by CO or O2 electrode poisoning.
Technical Paper

A Diesel Oxidation Catalyst for Exhaust Emissions Reduction

1993-11-01
932958
The authors used a mass spectrometer to determine an SOF reduction mechanism of a diesel oxidation catalyst. The results indicate that SOF reduction lies in the catalytic conversion of high molecular organic matter to low molecular organic matter. And unregulated emissions are also reduced through this conversion. It is also found that the SOF reduction performance is highly dependent up on the condition of the wash coat. There is some limitation to improving diesel oxidation catalyst performance because of the sulfur content found in diesel fuel. Finally, the authors have determined what we think are the specifications of the presently best catalytic converter.
Technical Paper

Reduction of Cooling Fan Noise Caused by Crankshaft Torsional Vibration

1993-05-01
931334
Improvements of interior and exterior noise are important targets in vehicle engineering. There are many reports concerning the reduction of radiator cooling fan noise. But, most of those reports are associated with studies of air flow noise. A radiator cooling fan connected to a crankshaft occasionally radiates structure-borne noise in addition to air flow noise. This structure-borne noise is caused by fan blade vibration excited by torsional vibration of a crankshaft. In this paper, we surveyed the mechanism of the structure-borne noise and discussed some methods for the noise reduction. And, as a result, we developed one of the noise reduction technique aiming at isolation of crankshaft vibration by modifying viscosity of the oil in a fan clutch.
Technical Paper

Sound Quality Evaluation of Passenger Vehicle Interior Noise

1993-05-01
931347
Objective measures to evaluate sound quality are important for proper sound design and noise improvement. In this paper, the objective measures of interior noise of passenger vehicle, which is operated at constant engine revolution speed, are discussed. Subjective evaluation test of the interior noise was done using the semantic differential method. By applying factor analysts to the subjective evaluation scores, three important factors of the sound quality were extracted, i.e. comfortable, powerful and booming factors. Each factor was correlated with various physical values, for example octave band levels. Furthermore, the data is analyzed by multiple linear regression analysis with stepwise variable selection, of the each factor scores against the various physical values. Finally, an objective measure to evaluate each of these factors was conducted using the combination of simple physical values. Each of these measures was good correlation with each of the subjective evaluations.
Technical Paper

Application of Common Rail Fuel Injection System to a Heavy Duty Diesel Engine

1994-11-01
942294
In the diesel engine industry, the growing trends are toward wider use of electronically controlled high pressure fuel injection equipment to provide better engine performance, while conforming to the stringent exhaust emission standards. Although there have been some recent announcements of a diesel engine that applies an electronically controlled common rail type fuel injection system, there is little literature published about any attempt to reduce both exhaust emissions and noise and to improve engine performance by varying injection pressure and injection timing independently and introducing pilot injection in combination. This paper describes the details of a study made on the parameters associated with injection timing, injection pressure and pilot injection and the procedures for their optimization, with an electronically controlled common rail type fuel injection system installed in an in-line 6-cylinder 6.9 liter turbocharged and intercooled DI diesel engine.
Technical Paper

A Study of the Durability of Diesel Oxidation Catalysts

1995-11-01
952650
Diesel emission control is being addressed worldwide to help preserve the global environment. In 1994, emission controls in the U.S. called for reduction of diesel particulate matter (PM) to 10 to 20% of 1986's initial limit. In the same year, we developed and marketed small and medium duty trucks which were equipped with PM reduction systems that oxidize soluble organic fraction (SOF) contained in the PM, in order to satisfy these new regulations. Prior to their marketing, a catalyst was selected from among several types of candidate catalysts. Durability tests were performed using a catalytic converter-equipped small duty truck to verify the durability of the chosen catalyst. The durability test course was set up combining urban areas and expressways in the southern part of California, U.S.A.. The cumulative total distance covered on the test course reached 200,000 km. During the durability test, the catalyst was evaluated by measurement of PM emission using a chassis dynamometer.
Technical Paper

Development of Damping SMC and Its Application as Material for a Rockercover

1996-02-01
960146
When replacing a metal engine part with plastic, it is necessary to regard vibration damping as one of the important factors in terms of noise reduction as well as strength and heat resistance as being characteristics of the material. Plastics are far better for vibration damping than steel or aluminum, but this property is reduced by the addition of glassfiber-reinforced or high heat-resisting resins. We have taken notice of SMC (Sheet Molding Compound) which has the excellent strength and heat resistance properties and studied it in order to increase its vibration damping property. Since organic polymers show the peak value for vibration damping performance in the vicinity of the glass transition temperature (Tg), we studied a method to shift the Tg near the operating temperature region in order to improve the vibration damping property.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
Technical Paper

Development of Diesel Particulate Trap Oxidizer System

1986-03-01
860294
A particulate trap oxidizer system to reduce diesel particulate emissions has been developed. This system consists of a ceramic foam filter with an optimum volume, shape, and mesh number in terms of collection efficiency, pressure loss and particulate blow-off; a catalyst with a low activated-temperature for particulate incineration and with no sulfate formation during highway driving; and a regeneration system which prevents particulate overcollection during long-term continuous low-load/low-speed driving where it is difficult to achieve self-burning of particulates with a catalytic reaction. This paper describes the development of the particulate trap oxidizer system with these technologies and presents the results of practicability evaluations and 50,000-mile vehicle durability tests.
X