Refine Your Search

Topic

Search Results

Technical Paper

Development of Titanium Alloy Valve Spring Retainers

1991-02-01
910428
Beta Ti alloy valve spring retainers are newly developed for use in mass produced automobiles for the first time. Ti alloy valve spring retainers vith a weight saving of 42%, compared to steel retainers, have reduced the inertial weight of the valve train components by 6%. And this weight reduction has the benefit of increasing the upper limit of the engine speed, which improves the engine performance. Ti alloy valve spring retainers are cold forged by the conventional fabrication facilities for steel retainers, using Ti-22V-4Al (the beta Ti alloy) which possesses excellent cold workability in a solution treated condition. Oxygen surface hardening is applied to protect Ti alloy valve spring retainers from wear damage. In addition, aging treatment and shot blasting are performed to improve strength and stiffness of valve retainers.
Technical Paper

Development of Austempered Ductile Iron Timing Gears

1997-11-17
973253
Austempered ductile iron (ADI) is a material having excellent mechanical properties and damping capacity. However practical mass production of ADI gears has not been possible due to ADI's poor machinability and distortion during the austempering heat treatment. With a new process method of carrying out hobbing before austempering when the material is in its soft condition, then austempering it and lastly, conducting the shave finishing process, we have diminished the above defects and developed practical ADI gears. These new gears generate less noise than ordinary nitrocarburized steel gears and are superior in pitting resistance.
Technical Paper

Common Rail Fuel Injection System for Improvement of Engine Performance on Heavy Duty Diesel Engine

1998-02-23
980806
With the intention of improving engine performance and emissions, the authors examined the influence of the method of initial fuel injection quantity reduction and of the injector configuration of a common rail fuel injection system on engine performance and exhaust emissions. Results showed that decreasing the nozzle hole diameter was an effective way to reduce the initial injection quantity without increasing black smoke. Compared to a three-way type injector, it was found that a two-way type injector can greatly reduce the amount of fuel leakage from the electromagnetic injector control valve and fuel consumption could be further improved by reduction of the driving loss. Furthermore, the increase of driving losses with higher injection pressure was small, and as a result, higher pressure injection was possible.
Technical Paper

Application to Body Parts of High-Strength Steel Sheet Containing Large Volume Fraction of Retained Austenite

1998-02-23
980954
Several different steel sheets were tested for energy absorption, using hat square columns and dynamic crash testing. Results indicate that steel sheets containing large volume fraction of retained austenite have relatively high energy absorption. The relationship between retained austenite and energy absorption was analyzed. These special steel sheets have already been successfully used for production body parts, such a front-side-member, without difficulties arising in volume production.
Technical Paper

Effect of Turbulence in Intake Port of MPI Engine on Fuel Transport Phenomena and Nonuniformity of Fuel/Air Mixing in Cylinder

1990-02-01
900162
Three zone mixture preparation model, assuming that fuel and air are distributed in three separate zones, fuel air and mixture zone, was proposed. Air Utilization Efficiency derived from the model was used to evaluate the mixing nonuniformity. Effect of the large scale nonisotropic turbulence downstream of the dimple or edge in the intake port of MPI engine on the convective mass transfer from fuel film was clarified by the proposed nondimensional index, Local Sherwood Number. It was found that when the fuel is injected toward the wall where large scale turbulence exists, almost all of the fuel is seeded in the air passing the region at the beginning of the intake process, resulting in the time-resolved nonuniformity of the mixture strength at the intake valve. Using the Air Utilization Efficiency, it was elucidated that time-resolved mixing nonuniformity at intake valves induces spatially nonuniform fuel/air distribution in the cylinder.
Technical Paper

Innovative injection rate control with next-generation, common-rail fuel injection system

2000-06-12
2000-05-0061
Injection rate control is an important capability of the ideal injection system of the future. However, in a conventional Common-Rail System (CRS) the injection pressure is constant throughout the injection period, resulting in a nearly rectangular injection rate shape and offering no control of the injection rate. Thus, in order to realize injection rate control with a CRS, a "Next- generation Common-Rail System (NCRS)" was conceptualized, designed, and fabricated. The NCRS has two common rails, for low- and high-pressure fuel, and switches the fuel pressure supplied to the injector from the low- to the high- pressure rail during the injection period, resulting in control over the injection rate shape. The effects of injection rate shape on exhaust emissions and fuel consumption were investigated by applying this NCRS to a single- cylinder research engine.
Technical Paper

New Mitsubishi V8 20 Liter Diesel Engine

1992-02-01
920085
In the heavy-duty commercial vehicle market in Japan, particularly in the segment of dump trucks and tractors, naturally aspirated engines maintain a dominant market share because of their superior torque characteristics in the low speed range. In order to meet the ever increasing needs for higher speeds of transportation, better fuel economy and higher reliability, and the needs for increasingly strict exhaust emission regulations, Mitsubishi Motors Corporation (MMC) has developed the 8M20, a 20 liter V8 diesel engine. The '92 model series of “THE GREAT”, MMC's main heavy-duty trucks, has featured this new and powerful engine and has been in the market place since October, 1991. The 8M20 is a naturally aspirated engine that provides an output of 294kW/2200rpm, complying with the current Japanese exhaust emission regulations.
Technical Paper

Prediction Method of Cooling System Performance

1993-03-01
930146
This paper describes a method of predicting cooling performance in order to obtain the optimum design of the cooling system and front-end shape in the early stage of car development. This method consists of four calculation parts: thermal load on the cooling system, air flow through the engine compartment, heat dissipation by the heat exchangers and temperature distribution within the cooling system. It outputs the coolant, engine oil, automatic transmission fluid (A.T.F.) and charge air temperatures in exchange for the input of several car, power plant, drive train, exterior shape and cooling system specifications. For the calculations, in addition to theoretical formulas, several experimental formulas are introduced. This method verification is shown by presenting a few test cases for the respective calculation parts and the final solution.
Technical Paper

Heat Flow on Disc Brakes

1993-04-01
931084
This paper describes an experimental analysis of frictional heat generated between the pads and rotors of disc brakes, to determine the paths and amounts of heat flow. The brakes were applied repeatedly at a constant initial speed, deceleration and interval until brake temperature became saturated. Under these conditions we measured an unsteady temperature distribution state during a single application of the brakes, and also a saturated (quasi-stationary) temperature distribution during repeated braking. Heat flow was studied in six paths: heat conduction to the pad; heat convection to the air from the friction areas of the inner and outer disc, from the ventilating parts and from the tube section of the rotor; and heat conduction to the rotor flange section.
Technical Paper

Reduction of Spiral Bevel Gear Noise in 4-Wheel Drive Vehicle Transfer System

1992-09-01
922109
Mitsubishi Motors Corporation uses spiral bevel gears in the transfer system for 4-wheel drive passenger cars modified from the front wheel drive configuration. This transfer gear ratio is near 1:1, and gears have uniform depth teeth cutting by the continuous generating method of OERLIKON cutting machine. In this method, the cutter and the work rotations are timed together to accomplish continuous indexing and cutting in order to enable high productivity. In general, it is difficult to reduce the meshing noise of spiral bevel gears and control its quality. The authors established the tooth surface coordinates, to reduce the meshing noise, by studying the influence of tooth surface coordinates on the meshing transmission error (MTE).
Technical Paper

Technology for Low Emission, Combustion Noise and Fuel Consumption on Diesel Engine

1994-03-01
940672
In order to reduce exhaust emission and combustion noise and to improve fuel consumption, the effects of the combustion system parameters of a diesel engine, such as injection pressure, injection nozzle hole diameter, swirl ratio, and EGR rate on exhaust emissions, combustion noise and fuel consumption are investigated and described in detail by analyzing rate of heat release, needle valve lift and injection pressure. Based on these results, reduction of exhaust emission and combustion noise and improvement of fuel consumption are described in the latter part of this paper. These results are shown as follows. The smaller nozzle hole diameter is effective for reducing smoke and PM, and by optimizing the injection timing and swirl ratio, NOx can also be reduced. In addition to the above, by applying EGR and higher injection pressure it is possible to improve the fuel consumption with the remaining low NOx and PM.
Technical Paper

Application of Common Rail Fuel Injection System to a Heavy Duty Diesel Engine

1994-11-01
942294
In the diesel engine industry, the growing trends are toward wider use of electronically controlled high pressure fuel injection equipment to provide better engine performance, while conforming to the stringent exhaust emission standards. Although there have been some recent announcements of a diesel engine that applies an electronically controlled common rail type fuel injection system, there is little literature published about any attempt to reduce both exhaust emissions and noise and to improve engine performance by varying injection pressure and injection timing independently and introducing pilot injection in combination. This paper describes the details of a study made on the parameters associated with injection timing, injection pressure and pilot injection and the procedures for their optimization, with an electronically controlled common rail type fuel injection system installed in an in-line 6-cylinder 6.9 liter turbocharged and intercooled DI diesel engine.
Technical Paper

EGR Technologies for a Turbocharged and Intercooled Heavy-Duty Diesel Engine

1997-02-24
970340
In this study three EGR methods were applied to a 12 liter turbocharged and intercooled Dl diesel engine, and the exhaust emission and fuel consumption characteristics were compared. One method is the Low Pressure Route system, in which the EGR is taken from down stream of the turbine to the compressor entrance. The other two systems are variations of the High Pressure Route system, in which the EGR is taken from the exhaust manifold to the intake manifold. One of the two High Pressure Route EGR systems is with back pressure valve located at downstream of the turbine and the other uses a variable geometry(VG) turbocharger. It was found that the High Pressure Route EGR system using VG turbocharger was the most effective and practical. With this method the EGR area could be enlarged and NOx reduced by 22% without increase in smoke or fuel consumption while maintaining an adequate excess air ratio.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
Technical Paper

Mitsubishi's Compound Intake System Engine

1985-02-01
850035
Mitsubishi Motors Corporation presents the newly-developed 2-liter engine, which we have named SIRIUS DASH. The SIRIUS DASH engine, with its compound intake system, features great performance in both high and low speed ranges while keeping fuel consumption low. The compound intake system operates the 3 valves in 2 stages. When engine speed is low, just one intake valve is used, but when engine speed increases, two intake valves are used. And to make this engine truly extraordinary, we added a turbocharger with an intercooler, and equipped the whole thing with a total electonic control system. Generally, high performance engines which have large inlet ports and high speed type valve timing enabling them to intake sufficient air for high performance at high speeds. The problem is here that when speed is dropped, combustion becomes unstable at the expense of torque and fuel consumption.
Technical Paper

Application of Micro-Alloyed Steel to Diesel Engine Parts for Trucks and Buses

1989-02-01
890137
Applying micro-alloyed steel as a cost-effective method of forging engine parts eliminates quench and temper processes and saves energy. We have expanded this application to timing gears and crankshafts by changing the connecting rod material to carbon steel and vanadium, applied at the outset. Then, micro-alloyed steel treated with a soft nitriding process was used. Our recent studies have been focused on materials which exhibit both higher tensile strength and better machinability. This paper describes the results of applying different types of micro-alloyed steel to those engine parts.
Technical Paper

A New Hydraulic Coupling Unit (HCU) for 4WD Vehicles

1989-02-01
890527
This year (1989) Mitsubishi Motors Corp. introduced, on some models, a newly-developed Hydraulic Coupling Uint (HCU), by which 2WD vehicles can be converted into 4WD ones in the same way as done by a viscous coupling (VC). This HCU is similar in the configuration to a vane pump: the oil discharge is returned to the suction chamber through a number of orifices. The rotor and cam ring (housing) are respectively connected to the two shafts; either of the one with the front wheels and the other with the rear wheels. Accordingly, it works as a slip-sensitive differential like a VC while it has a merit of progressive and parabolic torque-response characteristic, which offers stronger traction and acceleration capability and also minimizes tight-corner braking. This paper discusses primarily the configurations, functions and test results of the HCU and also presents an overview on further development possibilities of the 4WD system.
Technical Paper

Development of Diesel Particulate Trap Oxidizer System

1986-03-01
860294
A particulate trap oxidizer system to reduce diesel particulate emissions has been developed. This system consists of a ceramic foam filter with an optimum volume, shape, and mesh number in terms of collection efficiency, pressure loss and particulate blow-off; a catalyst with a low activated-temperature for particulate incineration and with no sulfate formation during highway driving; and a regeneration system which prevents particulate overcollection during long-term continuous low-load/low-speed driving where it is difficult to achieve self-burning of particulates with a catalytic reaction. This paper describes the development of the particulate trap oxidizer system with these technologies and presents the results of practicability evaluations and 50,000-mile vehicle durability tests.
Technical Paper

Improvements of Exhaust Gas Emissions and Cold Startability of Heavy Duty Diesel Engines by New Injection-Rate-Control Pump

1986-09-01
861236
In order to investigate the effects of high injection pressure on engine performance and exhaust emissions, some experimental high injection pressure in-line pumps were made and tested. Increasing fuel spray momentum by high injection pressure could reduce smoke emission, but excessive increase in injection pressure was found not so effective in further reducing smoke emission. Accordingly, a high injection pressure should be accomplished within the low engine speed range a feature that has been very difficult to achieve for a conventional in-line pump. An electronic controlled injection-rate-control pump with a variable prestroke mechanism can provide higher injection pressure in low engine speed range and advances injection timing in high engine speed range. This pump can improve fuel economy in low engine speed range and emissions (smoke and particulate) over transient FTP for HDE's.
Technical Paper

Intake-Port Design for Mitsubishi GDI Engine to Realize Distinctive In-Cylinder Flow and High Charge Coefficient

2000-10-16
2000-01-2801
The Mitsubishi GDI engine has adopted a pair of upright intake ports, to induce a rotating in-cylinder flow, reverse tumble, and control air fuel mixing with this flow. The port design of the GDI engine was optimized for achieving a high intensity of the reverse tumble while maintaining a high charge coefficient, by means of modeling of in-cylinder flow and experiment with a steady flow rig. First of all, the ideal design of the upright ports was discussed. It was found that for enhancing the reverse tumble, it is more effective to arrange a pair of the ports parallel, than to arrange them convergent. The parallel arrangement leads to the smoother flows passing through the intake sides of the intake valves, and then descending on the cylinder liner, that is turning toward the rotation direction of the reverse tumble, because of less impingement of the flows through a pair of the valves.
X