Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

In-Flight Off-Surface Flow Visualization Using Infrared Imaging

1991-04-01
911006
A flight test investigation was conducted to evaluate an infrared (IR) imaging technique to visualize off-surface flow phenomena. A single-engine, general-aviation airplane was equipped with an IR imaging system that viewed the region around the left wingtip. Vortical flow at the wingtip was seeded with sulfur hexafluoride, a gas with strong infrared absorbing and emitting characteristics. Different terrain and sky backgrounds were evaluated for their effect on IR images of vortical flow. The best IR images were obtained with a clear sky background. The results of the investigation indicate that IR flow visualization compliments existing smoke generator methods for off-surface flow visualization.
Technical Paper

Thermal Control of a LIDAR Laser System Using a Non-Conventional Ram Air Heat Exchanger

1990-09-01
902019
This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design was developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile.
Technical Paper

Flight Tests Using Data Link for Air Traffic Control and Weather Information Exchange

1990-09-01
901888
Message exchange for air traffic control (ATC) purposes via data link offers the potential benefits of increasing the airspace system safety and efficiency. This is accomplished by reducing communication errors and relieving the overloaded ATC radio frequencies, which hamper efficient message exchanges during peak traffic periods in many busy terminal areas. However, the many uses and advantages of data link create additional questions concerning the interface among the human-users and the cockpit and ground systems. A flight test was conducted in the NASA Langley B-737 airplane to contrast flight operations using current voice communications with the use of data link for transmitting both strategic and tactical ATC clearances during a typical commercial airline flight from takeoff to landing. Commercial airplane pilots were used as test subjects.
Technical Paper

26 X 6.6 Radial-Belted Aircraft Tire Performance

1991-09-01
912157
Preliminary results from testing of 26 X 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, on going joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving three different tire sizes. The 26 X 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 X 6.6 tire vertical stiffness properties are also presented and discussed.
Technical Paper

Practical Guidance for the Design of Controls and Displays for Single Pilot IFR

1983-10-03
831423
This paper represents a first step in developing the criteria for pilot interaction with advanced controls and displays in a single pilot IFR (SPIFR) environment. The research program presented herein is comprised of an analytical phase and an experimental phase. The analytical phase consisted of a review of fundamental considerations for pilot workload taking into account existing data, and using that data to develop a SPIFR pilot workload model. The rationale behind developing such a model was based on the concept that it is necessary to identify and quantify the most important components of pilot workload to guide the experimental phase of the research which consisted of an abbreviated flight test program. The purpose of the flight tests was to evaluate the workload associated with certain combinations of controls and displays in a flight environment. This was accomplished as a first step in building a data base for single pilot IFR controls and displays.
Technical Paper

Leading-Edge Design for improved Spin Resistance of Wings Incorporating Conventional and Advanced Airfoils

1985-10-01
851816
Discontinuous wing leading-edge droop designs have been evaluated as a means of modifying wing autorotative characteristics and thus improving airplane spin resistance. Addition of a discontinuous outboard wing leading-edge droop to three typical light airplanes having NACA 6-series wing sections produced significant improvements in stall characteristics and spin resistance. Wind tunnel tests of two wings having advanced natural laminar flow airfoil sections indicated that a discontinuous leading-edge droop can delay the onset of autorotation at high angles of attack without adversely affecting the development of laminar flow at cruise angles of attack.
Technical Paper

Laser Velocimeter Measurements of the Flow Fields Around Single- and Counter-Rotation Propeller Models

1985-04-01
850870
A two-component LV system was used to make detailed measurements of the flowfield around both a single-rotation and a counter-rotation propeller/nacelle. The conditions measured for the single-rotation tractor configuration include two different blade angles and two propeller advance ratios, and for the counter-rotation propeller configuration include both pusher and tractor mounts. The measurements show the increasing slipstream velocities and contraction with increasing blade angle and with decreasing advance ratio. Data for the counter-rotation system show that the aft propeller turns the flow in the opposite direction from the front propeller. Additionally, the LV system was used as a diagnostic tool to provide data to explain the large side force measured on the propeller/nacelle at angle-of-attack.
Technical Paper

Low-Speed Aerodynamic Characteristics of a Powered Nasp-Like Configuration in Ground Effect

1989-09-01
892312
An investigation was conducted in the Langley 14- By 22-Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a powered generic NASP-like configuration in ground effect. The model was a simplified configuration consisting of a triangular wedge forebody, a rectangular mid-section which housed the propulsion simulation system, and a rectangular wedge aftbody. Additional model components included a delta wing, exhaust flow deflectors, and aftbody fences. Six-component force and moment data were obtained over an angle of attack range from −4° to 18° while model height above the tunnel floor was varied from 1/4 inch to 6 feet. Variations in freestream dynamic pressure, from 10 psf to 80 psf, and engine ejector pressure yielded a range of thrust coefficients from 0 to 0.8. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow.
Technical Paper

Stability Characteristics of a Conical Aerospace Plane Concept

1989-09-01
892313
Wind tunnel investigations were conducted as part of an effort to develop a stability and control database for an aerospace plane concept across a broad range of Mach numbers. The generic conical design used in these studies represents one of a number of concepts being studied for this class of vehicle. The baseline configuration incorporated a 5° cone forebody, a 75.96° delta wing, a 16°leading-edge sweep deployable canard and a centerline vertical tail. Tests were conducted in the following NASA-Langley facilities spanning a Mach range of 0.1 to 6:30- by 60-Foot Tunnel,14- by 22-Foot Subsonic Tunnel, Low Turbulence Pressure Tunnel, National Transonic Facility, Unitary Plan Wind Tunnel, and the 20 Inch Mach 6 Tunnel. Data were collected for a number of model geometry variations and test conditions in each facility. This paper highlights some of the key results of these investigations pertinent to stability considerations about all three axes.
Technical Paper

Hypersonic CFD Applications for the National Aero-Space Plane

1989-09-01
892310
The design and analysis of the National Aerospace Plane (NASP) depends heavily on developing critical technology areas through the Technology Maturation Program (TMP). The TMP is being completed almost entirely in government laboratories with technology dissemination to all prime NASP contractors immediately upon completion of any portion of the technology development. These critical technology areas span the entire engineering design of the vehicle; included are structures, materials, propulsion systems, propellants, propulsion/airframe integration, controls, subsystems, and aerodynamics areas. There is currently a heavy dependence on Computational Fluid Dynamics (CFD) for verification of many of the classical engineering tools. Quite often the design of an aircraft uses wind tunnel tests for much of this verification, but for NASP, this task is almost impossible from a practical standpoint.
Technical Paper

Transition Research in the Mach 3.5 Low-Disturbance Wind Tunnel and Comparisons of Data with Theory

1989-09-01
892379
Supersonic wind tunnels with much lower stream disturbance levels than in conventional tunnels are required to advance transition research. The ultimate objectives of this research are to provide reliable predictions of transition from laminar to turbulent flow on supersonic flight vehicles and to develop techniques for the control and reduction of viscous drag and heat transfer. The experimental and theoretical methods used at NASA Langley to develop a low-disturbance pilot tunnel are described. Typical transition data obtained in this tunnel are compared with flight and previous wind-tunnel data and with predictions from linear stability theory,
Technical Paper

Computational Results for the Effects of External Disturbances on Transition Location on Bodies of Revolution from Subsonic to Supersonic Speeds and Comparisons with Experimental Data

1989-09-01
892381
Computational experiments have been performed for a few configurations in order to investigate the effects of external flow disturbances on the extent of laminar flow and wake drag. Theoretical results have been compared with experimental data for the AEDC cone, for Mach numbers from subsonic to supersonic, and for both free flight and wind tunnel environments. The comparisons have been found to be very satisfactory, thus establishing the utility of the present method for the design and development of “laminar flow” configurations and for the assessment of wind tunnel data. In addition, the present paper presents results of calculations concerning the effects of unit Reynolds numbers on transition. This phenomenon has been observed by a few experimental investigators but has been analyzed in detail for the first time in the present paper with the aid of the theoretical predictions.
Technical Paper

Theoretical Investigation for the Effects of Sweep, Leading-Edge Geometry, and Spanwise Pressure Gradients on Transition and Wave Drag at Transonic, and Supersonic Speed with Experimental Correlations

1988-10-01
881484
The results of a design study of a Hybrid Laminar Flow Control (HLFC) wing at transonic speed and correlative studies for finite, swept supersonic wings are discussed in this paper. Transonic HLFC wing was designed such as to obtain laminar laminar flow on the the wing upper surface for X/C of 0.6 and with suction applied from the leading edge to 60% of the chord and with suction applied from just aft of the leading edge to twenty-five percent of the chord. New theoretical methods have been recently developed for predicting pressure distributions, supersonic wave drag and transition location for finite swept wings at transonic and supersonic Mach number conditions and are illustrative computations are given. Results for laminar and turbulent boundary-layer parameters consisting of the displacement effects and skin friction drag are also presented.
Technical Paper

Wind-Tunnel Investigation of the Forebody Aerodynamics of a Vortex-Lift Fighter Configuration at High Angles of Attack

1988-10-01
881419
Results of a recent low-speed wind-tunnel investigation conducted to define the forebody flow on a 16% scale model of the NASA High Angle-of-Attack Research Vehicle (HARV), an F-18 configuration, are presented with analysis. Measurements include force and moment data, oil-flow visualizations, and surface pressure data taken at angles of attack near and above maximum lift (36° to 52°) at a Reynolds number of one million based on mean aerodynamic chord. The results presented identify the key flow-field features on the forebody including the wing-body strake.
Technical Paper

Investigations of Modifications to Improve the Spin Resistance of a High-Wing, Single-Engine, Light Airplane

1989-04-01
891039
Airplane flight tests have been conducted to determine the effects of wing leading-edge modifications and a ventral fin addition on the spin resistance of a typical high-wing, single-engine, general aviation airplane. Drooped wing leading-edge modifications which improve lateral stability at high angles of attack were tested in combination with a ventral fin that improves directional stability. Each modification was evaluated using spin resistance criteria which have been proposed for incorporation into the Federal Aviation Regulations for certification of light aircraft. The best configuration tested, a combination of outboard wing leading-edge droop and a ventral fin, provided a very significant increase in overall airplane spin resistance, but was not sufficient to satisfy all requirements of the spin resistance criteria.
Technical Paper

Tollmien-Schlschfing Instabilities in Laminar Flow In-Flight Detection of

1987-09-01
871016
The ability of modern airplane surfaces to achieve laminar flow over a wide range of subsonic and transonic cruise flight conditions has been well-documented in recent years. Current laminar flow flight research conducted by NASA explores the limits of practical applications of laminar flow drag reduction technology. Past laminar flow flight research focused on measurements of transition location, without exploring the dominant instability(ies) responsible for initiating the transition process. Today, it is important to understand the specific causes(s) of laminar to turbulent boundary layer transition. This paper presents results of research on advanced devices for measuring the phenomenon of viscous Tollmien-Schlichting (T-S) instability in the flight environment. In previous flight tests, T-S instability could only be inferred from theoretical calculations based on measured pressure distributions.
Technical Paper

Unique Research Challenges for High-Speed Civil Transports

1987-11-13
872400
Market growth and technological advances are expected to lead to a new generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with new technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research have been identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.
Technical Paper

Boundary-Layer Control for Drag Reduction

1987-11-13
872434
Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.
X