Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comprehensive Review of Pedestrian Impact Reconstruction

1987-02-01
2014-01-2828
This paper presents a review on pedestrian impact reconstruction methodology and offers a comprehensive review of the literature. Several types of analyses are discussed which can be used to reconstruct the accident scenario using the facts collected from the scene. Inclusive in this review is the utilization of skid mark analysis, debris analysis, injury/damage match-up, trajectory analysis, nighttime visibility, and alcohol effects. The pedestrian impact reconstruction methodology is illustrated with a real world case example to point out different observations which can provide insight into the pedestrian/vehicle collision reconstruction approach. The literature review provides a broad foundation of information on pedestrian impact reconstruction and can be used to supplement the techniques presented in this paper in areas related to pedestrian impact. Research advances in the area of pedestrian impact reconstruction are also discussed in this paper.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Technical Paper

Heavy Vehicles Kinematics of Automatic Emergency Braking Test Track Scenarios

2020-04-14
2020-01-0995
This paper presents the test track scenario design and analysis used to estimate the performances of heavy vehicles equipped with forward collision warning and automatic emergency braking systems in rear-end crash scenarios. The first part of this design and analysis study was to develop parameters for brake inputs in test track scenarios simulating a driver that has insufficiently applied the brakes to avoid a rear-end collision. In the second part of this study, the deceleration limits imposed by heavy vehicles mechanics and brake systems are used to estimate automatic emergency braking performance benefits with respect to minimum stopping distance requirements set by Federal Motor Vehicle Safety Standards. The results of this study were used to complete the test track procedures and show that all heavy vehicles meeting regulatory stopping distance requirements have the braking capacity to demonstrate rear-end crash avoidance improvements in the developed tests.
Journal Article

Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics

2015-06-15
2015-01-2189
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
Journal Article

How NHTSA Would Analyze the Costs and Benefits of Fire Safety

2008-04-14
2008-01-0258
The objective of this paper is to describe the general methodology used by NHTSA to perform cost-effectiveness analyses and cost-benefit analyses. This general method will then be directed towards how one could analyze fire countermeasures, providing two analyses as examples. First, for crash related fires, NHTSA's 2003 analysis on fuel tank integrity will be used. Second, for non-crash related fires, NHTSA's 2001 analysis of radiator caps will be used. The paper will describe what data sources were used to determine the target population, the severity of injuries, the costs of burns by injury severity, the cost of the fire countermeasures, etc. While not analyzing any specific fire countermeasure, the methodology will be described in enough detail that others could potentially follow the methodology and make estimates for their own purposes.
Journal Article

Model Based Engine Control Development and Hardware-in-the-Loop Testing for the EcoCAR Advanced Vehicle Competition

2011-04-12
2011-01-1297
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
Journal Article

Ignition Delay Correlation for Predicting Autoignition of a Toluene Reference Fuel Blend in Spark Ignition Engines

2011-04-12
2011-01-0338
An ignition delay correlation was developed for a toluene reference fuel (TRF) blend that is representative of automotive gasoline fuels exhibiting two-stage ignition. Ignition delay times for the autoignition of a TRF 91 blend with an antiknock index of 91 were predicted through extensive chemical kinetic modeling in CHEMKIN for a constant volume reactor. The development of the correlation involved determining nonlinear least squares curve fits for these ignition delay predictions corresponding to different inlet pressures and temperatures, a number of fuel-air equivalence ratios, and a range of exhaust gas recirculation (EGR) rates. In addition to NO control, EGR is increasingly being utilized for managing combustion phasing in spark ignition (SI) engines to mitigate knock. Therefore, along with other operating parameters, the effects of EGR on autoignition have been incorporated in the correlation to address the need for predicting ignition delay in SI engines operating with EGR.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Journal Article

Moving Deformable Barrier Test Procedure for Evaluating Small Overlap/Oblique Crashes

2012-04-16
2012-01-0577
In September 2009 the National Highway Traffic Safety Administration (NHTSA) published a report that investigated the incidence of fatalities to belted non-ejected occupants in frontal crashes involving late-model vehicles. The report concluded that after exceedingly severe crashes, the largest number of fatalities occurred in crashes involving poor structural engagement between the vehicle and its collision partner, present in crashes characterized as corner impacts, oblique crashes, impacts with narrow objects, and heavy vehicle underrides. By contrast, few if any of these 122 fatal crashes were full-frontal or offset-frontal impacts with good structural engagement, excepting crashes that were of extreme severity or the occupants that were exceptionally vulnerable. The intent of this research program is to develop a test protocol that replicates real-world injury potential in small overlap impacts (SOI) and oblique offset impacts (Oblique) in motor vehicle crashes.
Journal Article

Classifiers to Augment the CDC System to Distinguish the Role of Structure in a Frontal Impact Taxonomy

2012-04-16
2012-01-0575
The purpose of the study was to distinguish the role of vehicle structure in frontal impacts in published coded National Automotive Sampling System (NASS-CDS) data. The criteria used: Collision Deformation Classification (CDC) coding rules, crush profile locator data and the projected location of longitudinal structural members in models of vehicle class sizes used by NASS-CDS. Two classifiers were developed to augment the CDC system. The Coincidence classifier indicates the relationship between the quadrant of the clock face the crash vector originates in and the aspect of the end plane the center of damage is located. It has three values: Linear (12 o'clock impacts) Consistent and Variant ("oblique" Principal Directions of Force or PDOFs). The second classifier indicates the number of longitudinal members engaged: 0, 1 or 2. NASS-CDS data for sample years 2005 to 2009 was filtered for occupants involved in impacts with the highest ranked speed change assigned to the front-end plane.
Journal Article

Advanced Control Strategies for a Roll Simulator - A Feedback Linearization Technique Explored

2013-04-08
2013-01-0683
This paper presents a feedback linearization control technique as applied to a Roll Simulator. The purpose of the Roll Simulator is to reproduce in-field rollovers of ROVs and study occupant kinematics in a laboratory setting. For a system with known parameters, non-linear dynamics and trajectories, the feedback linearization algorithm cancels out the non-linearities such that the closed-loop dynamics behave in a linear fashion. The control inputs are computed values that are needed to attain certain desired motions. The computed values are a form of inverse dynamics or feed-forward calculation. With increasing system eigenvalue, the controller exhibits greater response time. This, however, puts a greater demand on the translational actuator. The controller also demonstrates that it is able to compensate for and reject a disturbance in force level.
Journal Article

Biomechanical Response of the Human Face and Corresponding Biofidelity of the FOCUS Headform

2010-04-12
2010-01-1317
In order to evaluate a human surrogate, the human and surrogate response must be defined. The purpose of this study was to evaluate the response of cadaver subjects to blunt impacts to the frontal bone, nasal bone and maxilla. Force-displacement corridors were developed based on the impact response of each region. Variation in the force-displacement response of the cadaver subjects due to the occurrence of fracture and fracture severity was demonstrated. Additionally, impacts were performed at matched locations using the Facial and Ocular CountermeasUre Safety (FOCUS) headform. The FOCUS headform is capable of measuring forces imposed onto facial structures using internal load cells. Based on the tests performed in this study, the nasal region of the FOCUS headform was found to be the most sensitive to impact location. Due to a wide range in geometrical characteristics, the nasal impact response varied significantly, resulting in wide corridors for human response.
Journal Article

Assessment of the Simulated Injury Monitor (SIMon) in Analyzing Head Injuries in Pedestrian Crashes

2012-04-16
2012-01-0569
Objectives. Examination of head injuries in the Pedestrian Crash Data Study (PCDS) indicates that many pedestrian head injuries are induced by a combination of head translation and rotation. The Simulated Injury Monitor (SIMon) is a computer algorithm that calculates both translational and rotational motion parameters relatable head injury. The objective of this study is to examine how effectively HIC and three SIMon correlates predict the presence of either their associated head injury or any serious head injury in pedestrian collisions. Methods. Ten reconstructions of actual pedestrian crashes documented by the PCDS were conducted using a combination of MADYMO simulations and experimental headform impacts. Linear accelerations of the head corresponding to a nine-accelerometer array were calculated within the MADYMO model's head simulation.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Micro-Texture Tailored Friction Modeling and Discrete Application in Drawability Improvement

2010-04-12
2010-01-0982
Friction plays an important role in the deep drawing process. Previous research shows friction condition can be tailored by applying micro-textures on tooling surfaces. A friction model is proposed to reveal the mechanism of altering friction condition by configuring micro-texture. A discrete friction concept is proposed to improve drawability of sheet metal and demonstrates numerically on a non-symmetric geometry drawing process.
Technical Paper

Charging Strategy Studies for PHEV Batteries based on Power Loss Model

2010-04-12
2010-01-1238
This paper describes a new method to increase the efficiency of the battery charging process, η, which is defined as the ratio of the energy accumulated in the battery over the actual energy supplied to it. Through several simulation results, it has been found that such efficiency is a function of the current profile applied to the battery during the charging process; hence, plots describing the energy loss in the battery, time taken to achieve a desired level of charge, and power needed as a function of the charging current, are shown. In order to find the optimal charging current profile, the mathematical model of the energy loss in the battery is developed and the problem of finding the optimal current profile is formulated as an Optimal Control problem. A model based on a Lithium-Ion Battery commercially available for PHEV is used as the plant to be controlled.
Technical Paper

Simulation Results from a Model of a Tractor Trailer Vehicle Equipped with Roll Stability Control

2010-04-12
2010-01-0098
In 2007, a software model of a Roll Stability Control (RSC) system was developed based on test data for a Volvo tractor at NHTSA's Vehicle Research and Test Center (VRTC). This model was designed to simulate the RSC performance of a commercially available Electronic Stability Control (ESC) system. The RSC model was developed in Simulink and integrated with the available braking model (TruckSim) for the truck. The Simulink models were run in parallel with the vehicle dynamics model of a truck in TruckSim. The complete vehicle model including the RSC system model is used to simulate the behavior of the actual truck and determine the capability of the RSC system in preventing rollovers under different conditions. Several simulations were performed to study the behavior of the model developed and to compare its performance with that of an actual test vehicle equipped with RSC.
Technical Paper

Validation and Enhancement of a Heavy Truck Simulation Model with an Electronic Stability Control Model

2010-04-12
2010-01-0104
Validation was performed on an existing heavy truck vehicle dynamics computer model with roll stability control (RSC). The first stage in this validation was to compare the response of the simulated tractor to that of the experimental tractor. By looking at the steady-state gains of the tractor, adjustments were made to the model to more closely match the experimental results. These adjustments included suspension and steering compliances, as well as auxiliary roll moment modifications. Once the validation of the truck tractor was completed for the current configuration, the existing 53-foot box trailer model was added to the vehicle model. The next stage in experimental validation for the current tractor-trailer model was to incorporate suspension compliances and modify the auxiliary roll stiffness to more closely model the experimental response of the vehicle. The final validation stage was to implement some minor modifications to the existing RSC model.
Technical Paper

Development of a Method to Assess Vehicle Stability and Controllability in Open and Closed-Loop Maneuvers

2010-04-12
2010-01-0111
This paper describes a method to evaluate vehicle stability and controllability when the vehicle operates in the nonlinear range of lateral dynamics. The method is applied to open-loop steering maneuvers as well as closed-loop path-following maneuvers. Although path-following maneuvers are more representative of real world driving intent, they are usually considered inappropriate for objective assessment because of repeatability and accuracy issues. The automated test driver (ATD) can perform path-following maneuvers accurately and with good repeatability. This paper discusses the usefulness of application of the automated test drivers and path-following maneuvers. The dynamic mode of instability is not directly obtained from measurable outputs such as yawrate and lateral acceleration as in open-loop maneuvers. A few metrics are defined to quantify deviation from desired or ideal behavior in terms of observed “unexpected” lateral force and moment.
X