Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Human Factors Evaluation of Existing Side Collision Avoidance System Driver Interfaces

1995-11-01
952659
This paper describes the assessment of driver interfaces of a type of electronics-based collision avoidance systems that has been recently developed to assist drivers of vehicles in avoiding certain types of collisions. The electronics-based crash avoidance systems studied were those which detect the presence of objects located on the left and/or right sides of the vehicle, called Side Collision Avoidance Systems, or SCAS. As many SCAS as could be obtained, including several pre-production prototypes, were acquired and tested. The testing focused on measuring sensor performance and assessing the qualities of the driver interfaces. This paper presents only the results of the driver interface assessments. The sensor performance data are presented in the NHTSA report “Development of Performance Specifications for Collision Avoidance Systems for Lane Changing, Merging, and Backing - Task 3 - Test of Existing Hardware Systems” [1].
Technical Paper

Driver Crash Avoidance Behavior with ABS in an Intersection Incursion Scenario on Dry Versus Wet Pavement

1999-03-01
1999-01-1288
The National Highway Traffic Safety Administration (NHTSA) has developed its Light Vehicle Antilock Brake Systems (ABS) Research Program in an effort to determine the cause (s) of the apparent increase in fatal single-vehicle run-off-road crashes as vehicles undergo a transition from conventional brakes to ABS. As part of this program, NHTSA conducted research examining driver crash avoidance behavior and the effects of ABS on drivers' ability to avoid a collision in a crash-imminent situation. The study described here was conducted on a test track under dry and wet pavement conditions to examine the effects of ABS versus conventional brakes, ABS brake pedal feedback level, and ABS instruction on driver behavior and crash avoidance performance. This study found that drivers do tend to brake and steer in realistic crash avoidance situations and that excessive steering can occur.
Technical Paper

Driver Crash Avoidance Behavior with ABS in an Intersection Incursion Scenario on the Iowa Driving Simulator

1999-03-01
1999-01-1290
The National Highway Traffic Safety Administration (NHTSA) has developed its Light Vehicle Antilock Brake Systems (ABS) Research Program in an effort to determine the cause (s) of the apparent increase in fatal single-vehicle run-off-road crashes as vehicles undergo a transition from conventional brakes to ABS. As part of this program, NHTSA conducted research examining driver crash avoidance behavior and the effects of ABS on drivers’ ability to avoid a collision in a crash-imminent situation. The study described here was conducted on the Iowa Driving Simulator and examined the effects of ABS versus conventional brakes, speed limit, ABS instruction, and time-to-intersection (TTI) on driver behavior and crash avoidance performance. This study found that average, alert drivers do tend to brake and steer in realistic crash avoidance situations and that excessive steering can occur. However, this behavior did not result in a significant number of road departures.
X