Refine Your Search

Topic

Author

Search Results

Technical Paper

The Interaction of Air Bags with Upper Extremities

1997-11-12
973324
Recently there has been a greater awareness of the increased risk of certain injuries associated with air bag deployment, especially the risks to small occupants, often women. These injuries include serious eye and upper extremity injuries and even fatalities. This study investigates the interaction of a deploying air bag with cadaveric upper extremities in a typical driving posture; testing concentrates on female occupants. The goals of this investigation are to determine the risk of upper extremity injury caused by primary contact with a deploying air bag and to elucidate the mechanisms of these upper extremity injuries. Five air bags were used that are representative of a wide range of air bag ‘aggressivities’ in the current automobile fleet. This air bag ‘aggressivity’ was quantified using the response of a dummy forearm under air bag deployment.
Technical Paper

Air Bags - Legions of Fable - Consumer Perceptions and Concerns

1998-02-23
980905
This paper discusses the consumer and news media perceptions about air bags that had to be taken into account by the National Highway Traffic Safety Administration in making rulemaking decisions in 1997. Addressing these perceptions was a major concern as the agency made preparations to allow identifiable groups of people at risk from an air bag deployments to have on-off switches installed in their vehicles.
Technical Paper

Restraint Robustness in Frontal Crashes

2007-04-16
2007-01-1181
The protection of a vehicle occupant in a frontal crash is a combination of vehicle front structural design and occupant restraint design. Once chosen and manufactured, these design features must interact with a wide variety of structural characteristics in potential crash partners. If robust, the restraint design will provide a high level of protection for a wide variety of crash conditions. This paper examines how robust a given restraint system is for occupant self-protection and how frontal design can improve the restraint performance of potential crash partners, thus improving their restraint robustness as well. To examine restraint robustness in self protection, the effect of various vehicle deceleration characteristics on occupant injury potential is investigated for a given restraint design. A MADYMO model of a 1996 Taurus interior and its restraint system with a Hybrid III 50th percentile male dummy are simulated and subjected to 650 crash pulses taken during 25 years of U.S.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles - Driver Lane Change Performance Preliminary Results

2010-10-05
2010-01-2020
On-board Camera/Video Imaging Systems (C/VISs) for heavy vehicles display live images to the driver of selected areas to the sides, and in back of the truck's exterior using displays inside the truck cabin. They provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration, and to better judge the clearance between the trailer and an adjacent vehicle when changing lanes. The Virginia Tech Transportation Institute is currently investigating commercial motor vehicle (CMV) driver performance with C/VISs through a technology field demonstration sponsored by the National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Administration (FMCSA). Data collection, which consists of recording twelve CMV drivers performing their daily employment duties with and without a C/VIS for four months, is currently underway.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Large truck crash data collection

2001-06-04
2001-06-0159
The National Highway Safety Administration (NHTSA) is collecting crash data relating to large trucks. Two data collection programs are specified. One is a crash causation study to investigate the cause of fatal and serious large truck crashes over two years. The other study is a continuous effort collecting data on large truck motor carrier crashes in each state, as coded on police accident reports.
Technical Paper

Large school bus safety restraint evaluation

2001-06-04
2001-06-0158
This paper describes ongoing research conducted by the National Highway Traffic Safety Administration (NHTSA) to evaluate the potential of safety restraints on large school buses. School bus transportation is one of the safest forms of transportation in the United States. Large school buses provide protection because of their visibility, size, and weight, as compared to other types of motor vehicles. Additionally, they are required to meet minimum Federal Motor Vehicle Safety Standards (FMVSS) mandating compartmentalized seating, emergency exits, roof crush and fuel system integrity, and minimum bus body joint strength.
Technical Paper

PERFORMANCE EVALUATION OF DUAL STAGE PASSENGER AIR BAG SYSTEMS

2001-06-04
2001-06-0190
A research program was initiated to evaluate the performance of prototype dual stage passenger air bags in terms of both restraint system performance and deployment aggressivity for different size occupants. Variations in inflator partitions, vent hole diameter sizes, and deployment timing were examined. High speed unbelted sled tests were conducted with both 50th percentile male and 5th percentile female Hybrid III adult dummies at 48 kmph; and belted sled tests were conducted at 56 kmph. Low risk deployment tests with child dummies were conducted to evaluate air bag aggressivity. Overall, it was concluded that the dual stage air bag systems under evaluation had improved performance over the baseline single stage systems in terms of providing high speed protection while reducing aggressivity to out-of-position occupants; however, some dual stage systems may require additional occupant detection methodologies to suppress or control inflation.
Technical Paper

NHTSA'S crashworthiness modelling activities

2001-06-04
2001-06-0178
NHTSA uses a variety of computer modelling techniques to develop and evaluate test methods and mitigation concepts, and to estimate safety benefits for many of NHTSA's research activities. Computer modeling has been particularly beneficial for estimating safety benefits where often very little data are available. Also modeling allows researchers to augment test data by simulating crashes over a wider range of conditions than would otherwise be feasible. These capabilities are used for a wide range of projects from school bus to frontal, side, and rollover research programs. This paper provides an overview of these activities. NHTSA's most extensive modeling research involves developing finite element and articulated mass models to evaluate a range of vehicles and crash environments. These models are being used to develop a fleet wide systems model for evaluating compatibility issues.
Technical Paper

NHTSA'S research program for vehicle aggressivity and fleet compatibility

2001-06-04
2001-06-0179
This paper presents an overview of NHTSA's vehicle aggressivity and fleet compatibility research activities. This research program is being conducted in close cooperation with the International Harmonized Research Agenda (IHRA) compatibility research group. NHTSA is monitoring the changing vehicle mix in the U.S. fleet, analyzing crash statistics, and evaluating any implications that these changes may have for U.S. occupant safety. NHTSA is also continuing full-scale crash testing to develop a better understanding of vehicle compatibility and to investigate test methods to assess vehicle compatibility.
Technical Paper

Air bag crash investigations

2001-06-04
2001-06-0009
The performance of air bags, as an occupant protection system, is of high interest to the National Highway Traffic Safety Administration (NHTSA or Agency). Since 1972, the NHTSA has operated a Special Crash Investigations (SCI) program which provides in-depth crash investigation data on new and rapidly changing occupant protection technologies in real-world crashes. The Agency uses these in-depth data to evaluate vehicle safety systems and form a basis for rulemaking actions. The data are also used by the automotive industry and other organizations to evaluate the performance of motor vehicle occupant protection systems such as air bags. This paper presents information from NHTSA's SCI program concerning crash investigations on air-bag-equipped vehicles. The paper focus is on data collection and some general findings in air bag crash investigations including: air-bag-related fatal and life-threatening injuries; side air bags; redesigned air bags and advanced air bags.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Evaluation of injury risk from side impact air bags

2001-06-04
2001-06-0091
Several thoracic and head protection side impact air bag systems (SAB) are emerging in the U.S. market and are projected to become prevalent in the fleet. These systems appear to offer superior protection in side crashes. However, concerns have been raised as to their potential for causing injury to out-of-position (OOP) occupants. This paper describes the National Highway Traffic Safety Administration (NHTSA) program for evaluation of the SAB systems for OOP occupants and provides a status report on the current research. The industry's Side Airbag Out-of- Position Injury Technical Working Group (TWG) recommended procedures for 3-year-old and 6-year-old occupants are evaluated. Additional test procedures are described to augment the TWG procedures for these occupants and 12-month- old infants.
Technical Paper

Antilock Systems for Air-Braked Vehicles

1992-01-01
890113
When a heavy vehicle driver (or in fact a driver of any vehicle) makes a brake application that is too "hard" for conditions - especially when the vehicle is lightly loaded or empty and/or the road is wet or slippery - he is likely to lock some or all of his wheels. Under these conditions, the tractor can jackknife or the trailer can swing out of its lane (if it is a combination-unit vehicle) or the truck can spin out (if it is a single-unit vehicle). Incorporation of an antilock brake system addresses the wheel lock and resultant control loss.
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

Frontal Air Bag Deployment in Side Crashes

1998-02-23
980910
NHTSA conducted seventy-six side impact FMVSS No. 214 compliance tests from 1994 through 1997. The compliance tests are nearly right angle side impacts with low longitudinal components of change of velocity (Δv). Frontal air bag deployments were found to have occurred for 34% of the driver bags and 32% of the front passenger bags in these compliance-tested passenger cars. In 1997, NHTSA began testing passenger cars 'in side impact in the New Car Assessment Program (NCAP). The NCAP crash tests are conducted at a higher speed than the compliance tests. The cars in the NCAP side impact tests also had low longitudinal components of Δv. Approximately 40% of the twenty-six passenger cars tested in the 1997 Side Impact NCAP had their frontal air bags deploy. Real world crash data were examined to determine if frontal air bags are deploying in right angle side impacts on the roads of the US.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
X