Refine Your Search

Topic

Author

Search Results

Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Comparative Performance Testing of Passenger Cars Relative to Fmvss 214 and the Ue 96/Ec/27 Side Impact Regulations: Phase I

1998-05-31
986168
Based on a long recognized need, the National Highway Traffic Safety Administration (NHTSA) has begun to reexamine the potential for international harmonization of side impact requirements. To this end, NHTSA, as directed by the U.S. Congress, has recently submitted a report to the Congress on the agency plans for achieving harmonization of the U.S. and European side impact regulations. The first phase of this plan involves crash testing vehicles compliant to FMVSS 214 to the European Union side impact directive 96/27/EC. This paper presents the results to date of this research. The level of safety performance of the vehicles based on the injury measures of the European and U.S. side impact regulations is assessed.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles - Driver Lane Change Performance Preliminary Results

2010-10-05
2010-01-2020
On-board Camera/Video Imaging Systems (C/VISs) for heavy vehicles display live images to the driver of selected areas to the sides, and in back of the truck's exterior using displays inside the truck cabin. They provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration, and to better judge the clearance between the trailer and an adjacent vehicle when changing lanes. The Virginia Tech Transportation Institute is currently investigating commercial motor vehicle (CMV) driver performance with C/VISs through a technology field demonstration sponsored by the National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Administration (FMCSA). Data collection, which consists of recording twelve CMV drivers performing their daily employment duties with and without a C/VIS for four months, is currently underway.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for the NADS of the 1998 Chevrolet Malibu

2001-03-05
2001-01-0140
The paper discusses the development of a model for a 1998 Chevrolet Malibu for the National Advanced Driving Simulator’s (NADS) vehicle dynamics simulation, NADSdyna. The Malibu is the third vehicle modeled for the NADS, and this is the third paper dealing with model development. SAE Paper 970564 contains details of the model for the 1994 Ford Taurus and SAE Paper 1999–01-0121 contains details of the model for the 1997 Jeep Cherokee. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid body dynamics formulations. The suspension springs and shock absorbers are modeled as elements in the rigid body formulation. To complement the vehicle dynamics for the NADS application, subsystem models that include tire forces, braking, powertrain, aerodynamics, and steering are added to the rigid body dynamics model. The models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Large truck crash data collection

2001-06-04
2001-06-0159
The National Highway Safety Administration (NHTSA) is collecting crash data relating to large trucks. Two data collection programs are specified. One is a crash causation study to investigate the cause of fatal and serious large truck crashes over two years. The other study is a continuous effort collecting data on large truck motor carrier crashes in each state, as coded on police accident reports.
Technical Paper

Large school bus safety restraint evaluation

2001-06-04
2001-06-0158
This paper describes ongoing research conducted by the National Highway Traffic Safety Administration (NHTSA) to evaluate the potential of safety restraints on large school buses. School bus transportation is one of the safest forms of transportation in the United States. Large school buses provide protection because of their visibility, size, and weight, as compared to other types of motor vehicles. Additionally, they are required to meet minimum Federal Motor Vehicle Safety Standards (FMVSS) mandating compartmentalized seating, emergency exits, roof crush and fuel system integrity, and minimum bus body joint strength.
Technical Paper

Rear-end collision warning system field operational test~Status report

2001-06-04
2001-06-0205
This paper provides an overview of a cooperative research program between General Motors Corporation and the National Highway Traffic Safety Administration to conduct a field operational test of a rear-end collision warning system. A description of the system architecture is also presented.
Technical Paper

Pedestrian head impact testing and PCDS reconstructions

2001-06-04
2001-06-0184
Pedestrian research and testing at the NHTSA Vehicle Research and Test Center has recently focused on assessment of proposed ISO and EEVC head impact test procedures, and extension of these procedures to additional vehicle frontal surfaces. In addition to test parameter sensitivity evaluation, reconstruction of PCDS (Pedestrian Crash Data Study) cases with laboratory impact tests and computer simulations has been conducted. This paper presents the results of this research.
Technical Paper

NHTSA'S crashworthiness modelling activities

2001-06-04
2001-06-0178
NHTSA uses a variety of computer modelling techniques to develop and evaluate test methods and mitigation concepts, and to estimate safety benefits for many of NHTSA's research activities. Computer modeling has been particularly beneficial for estimating safety benefits where often very little data are available. Also modeling allows researchers to augment test data by simulating crashes over a wider range of conditions than would otherwise be feasible. These capabilities are used for a wide range of projects from school bus to frontal, side, and rollover research programs. This paper provides an overview of these activities. NHTSA's most extensive modeling research involves developing finite element and articulated mass models to evaluate a range of vehicles and crash environments. These models are being used to develop a fleet wide systems model for evaluating compatibility issues.
Technical Paper

NHTSA'S research program for vehicle aggressivity and fleet compatibility

2001-06-04
2001-06-0179
This paper presents an overview of NHTSA's vehicle aggressivity and fleet compatibility research activities. This research program is being conducted in close cooperation with the International Harmonized Research Agenda (IHRA) compatibility research group. NHTSA is monitoring the changing vehicle mix in the U.S. fleet, analyzing crash statistics, and evaluating any implications that these changes may have for U.S. occupant safety. NHTSA is also continuing full-scale crash testing to develop a better understanding of vehicle compatibility and to investigate test methods to assess vehicle compatibility.
Technical Paper

Enhancing post-crash vehicle safety through an automatic collision notification system

2001-06-04
2001-06-0085
In August of 2000, the National Highway Traffic Safety Administration (NHTSA) completed an Automated Collision Notification (ACN) Field Operational Test (FOT) in Erie County, New York, that combined crash sensing, position location, and wireless communications technology in a system with the goal of saving lives and reducing disabilities from injuries by providing faster and more informed emergency medical responses to serious injury crashes. The ACN FOT Team designed and built an ACN system prior to the start of the test period in July 1997. ACN in-vehicle systems were than installed in 850 vehicles. The crash notification messages were delivered to emergency response and dispatch equipment installed at the Erie County Sheriff's Office, which served as the Public Safety Answering Point (PSAP) for this FOT.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Evaluation of injury risk from side impact air bags

2001-06-04
2001-06-0091
Several thoracic and head protection side impact air bag systems (SAB) are emerging in the U.S. market and are projected to become prevalent in the fleet. These systems appear to offer superior protection in side crashes. However, concerns have been raised as to their potential for causing injury to out-of-position (OOP) occupants. This paper describes the National Highway Traffic Safety Administration (NHTSA) program for evaluation of the SAB systems for OOP occupants and provides a status report on the current research. The industry's Side Airbag Out-of- Position Injury Technical Working Group (TWG) recommended procedures for 3-year-old and 6-year-old occupants are evaluated. Additional test procedures are described to augment the TWG procedures for these occupants and 12-month- old infants.
Technical Paper

An Experimental Examination of Double Lane Change Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1009
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed during the spring through fall of 2001. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 2” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from four Rollover Resistance maneuvers are presented. The Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are discussed. Details regarding the NHTSA J-Turn, and the three fishhook maneuvers are available in “Volume 1” [2].
Technical Paper

An Experimental Examination of J-Turn and Fishhook Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1008
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed in 2001, starting in the spring and continuing through the fall. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 1” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from one Characterization maneuver (the Slowly Increasing Steer maneuver) and four Rollover Resistance maneuvers are discussed (the NHTSA J-Turn, Fishhook 1a, Fishhook 1b, and Nissan Fishhook). Details regarding NHTSA's assessment of the Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are available in “Volume 2” [2].
Technical Paper

Antilock Systems for Air-Braked Vehicles

1992-01-01
890113
When a heavy vehicle driver (or in fact a driver of any vehicle) makes a brake application that is too "hard" for conditions - especially when the vehicle is lightly loaded or empty and/or the road is wet or slippery - he is likely to lock some or all of his wheels. Under these conditions, the tractor can jackknife or the trailer can swing out of its lane (if it is a combination-unit vehicle) or the truck can spin out (if it is a single-unit vehicle). Incorporation of an antilock brake system addresses the wheel lock and resultant control loss.
X