Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Measurement and Modeling of Tire Forces on a Low Coefficient Surface

2006-04-03
2006-01-0559
There exists a fairly extensive set of tire force measurements performed on dry pavement. But in order to develop a low-coefficient of friction tire model, a set of tire force measurements made on wet pavement is required. Using formulations and parameters obtained on dry roads, and then reducing friction level to that of a wet road is not sufficient to model tire forces in a high fidelity simulation. This paper describes the process of more accurately modeling low coefficient tire forces on the National Advanced Driving Simulator (NADS). It is believed that the tire model improvements will be useful in many types of NADS simulations, including ESC and other advanced vehicle technology studies. In order to produce results that would come from a road surface that would be sufficiently slippery, a set of tires were shaved to 4/32 inches and sent to a tire-testing lab for measurement.
Technical Paper

Effects of Outriggers on Dynamic Rollover Resistance Maneuvers - Results from Phase V of NHTSA's Light Vehicle Rollover Research Program

2003-03-03
2003-01-1011
This paper describes the National Highway Traffic Safety Administration's (NHTSA) efforts to determine how different outrigger designs can affect J-Turn and Road Edge Recovery test maneuver outcome. Data were collected during tests performed with three different outrigger designs (made from aluminum, carbon fiber, and titanium) having different physical properties (geometry and weight). Four sport utility vehicles were tested: a 2001 Chevrolet Blazer, 2001 Toyota 4Runner, 2001 Ford Escape, and a 1999 Mercedes ML320. The 4Runner and ML320 were each equipped with electronic stability control, however the systems were disabled for the tests performed in this study. A detailed description of the testing performed and the results obtained are discussed. From the results, a comparison of how the three outrigger designs affected the test results is provided.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

Reducing the Risk of Driver Injury from Common Steering Control Devices in Frontal Collisions

1999-03-01
1999-01-0759
Steering control devices are used by people who have difficulty gripping the steering wheel. These devices have projections that may extend up to 14 cm toward the occupant. Testing indicated that contact with certain larger steering control devices with tall rigid projections could severely injure a driver in a frontal collision. In order to reduce this injury risk, an alternative, less injurious design was developed and tested. This design, which included replacing unyielding aluminum projections with compliant plastic ones, produced significantly lower peak contact pressure and less damage to the chest of a cadaver test subject, while maintaining the strength necessary to be useful.
Technical Paper

A Review of Motor Vehicle Glazing-Related Ejection Injuries

1993-03-01
930740
A review was conducted of injuries associated with ejection through motor vehicle glazing, using the 1988 through 1991 National Accident Sampling System data maintained by the National Highway Traffic Safety Administration. The review indicated that one percent of the occupants in towaway crashes were ejected and that 22 percent of fatalities in towaway crashes were ejected. Fifty-three percent of complete ejections were through the glazing openings in motor vehicles. Current motor vehicle glazing does not contribute significantly to occupant injuries, but the effects of glazing changes on serious injuries will need to be considered.
Technical Paper

Determining the Effects of Brake Degradation

1973-02-01
730190
This paper presents an approach for evaluating the effects of brake system component degradation on vehicle braking performance. The approach involves the use of an inertial brake dynamometer, vehicle computer simulation, and vehicle test. The approach, procedures, and results of the study of the effects of worn friction materials, worn discs and drums, and contaminated brakes are presented.
Technical Paper

Comparison of Pedestrian Kinematics and Injuries in Staged Impact Tests with Cadavers and Mathematical 2D Simulations

1983-02-01
830186
The paper presents a comparison of kinematic responses between the MVMA-2D and the MAC-DAN pedestrian models and pedestrian cadaver kinematics observed in staged car/pedestrian impact tests. The paper also discusses the injuries experienced in the cadaver tests. Seven cadaver specimens in the standing posture were impacted at 25 mph by two different cars: one having a steel bumper and the other having a plastic bumper. The MVMA-2D and MAC-DAN mathematical pedestrian models were employed to simulate pedestrian impacts at 25 mph by a vehicle with a stylized geometry that is similar to the vehicles used in cadaver tests. Comparison of the simulations and the cadaver tests show that both models require further refinement to be able to more accurately simulate the kinematics of the lower legs during impacts with the vehicle bumper.
X