Refine Your Search


Search Results

Technical Paper

Development of Brain Injury Criteria (BrIC)

Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models.
Technical Paper

Measurement and Modeling of Tire Forces on a Low Coefficient Surface

There exists a fairly extensive set of tire force measurements performed on dry pavement. But in order to develop a low-coefficient of friction tire model, a set of tire force measurements made on wet pavement is required. Using formulations and parameters obtained on dry roads, and then reducing friction level to that of a wet road is not sufficient to model tire forces in a high fidelity simulation. This paper describes the process of more accurately modeling low coefficient tire forces on the National Advanced Driving Simulator (NADS). It is believed that the tire model improvements will be useful in many types of NADS simulations, including ESC and other advanced vehicle technology studies. In order to produce results that would come from a road surface that would be sufficiently slippery, a set of tires were shaved to 4/32 inches and sent to a tire-testing lab for measurement.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Development and Design of Thor-Lx: The Thor Lower Extremity

A new lower extremity has been developed to be used with Thor, the NHTSA Advanced Frontal Dummy. The new lower extremity, known as Thor-Lx, consists of the femur, tibia, ankle joints, foot, a representation of the Achilles' tendon and the associated flash/skins, it has been designed to improve biomechanical response under axial loading of the femur during knee impacts, axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/aversion. Instrumentation includes a standard Hybrid ill femur load cell, accelerometers, load cells, and rotary potentiometers to capture relevant kinematic and dynamic information from the foot and tibia. The design also allows the Tnor-Lx to be attached to the Hybrid III, either at the hip, or at the knee.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Accelerometers Equivalency in Dummy Crash Testing

The National Highway Traffic Safety Administration has initiated research to develop performance specifications for dummy-based accelerometers in the crash test environment, and to provide criteria for defining and establishing equivalent performance among accelerometers from different manufacturers. These research efforts are within the general guidelines on transducer equivalency outlined in the current revision of the Society of Automotive Engineers recommended practice, Instrumentation for Impact Test, SAE 211/2 March 1995. Representative data from vehicle crash and component level tests have been analyzed to determine the acceleration levels and frequency content in a realistic dynamic environment for dummy-based accelerometers.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

On the Development of the SIMon Finite Element Head Model

The SIMon (Simulated Injury Monitor) software package is being developed to advance the interpretation of injury mechanisms based on kinematic and kinetic data measured in the advanced anthropomorphic test dummy (AATD) and applying the measured dummy response to the human mathematical models imbedded in SIMon. The human finite element head model (FEHM) within the SIMon environment is presented in this paper. Three-dimensional head kinematic data in the form of either a nine accelerometer array or three linear CG head accelerations combined with three angular velocities serves as an input to the model. Three injury metrics are calculated: Cumulative strain damage measure (CSDM) – a correlate for diffuse axonal injury (DAI); Dilatational damage measure (DDM) – to estimate the potential for contusions; and Relative motion damage measure (RMDM) – a correlate for acute subdural hematoma (ASDH).
Technical Paper

NHTSA'S crashworthiness modelling activities

NHTSA uses a variety of computer modelling techniques to develop and evaluate test methods and mitigation concepts, and to estimate safety benefits for many of NHTSA's research activities. Computer modeling has been particularly beneficial for estimating safety benefits where often very little data are available. Also modeling allows researchers to augment test data by simulating crashes over a wider range of conditions than would otherwise be feasible. These capabilities are used for a wide range of projects from school bus to frontal, side, and rollover research programs. This paper provides an overview of these activities. NHTSA's most extensive modeling research involves developing finite element and articulated mass models to evaluate a range of vehicles and crash environments. These models are being used to develop a fleet wide systems model for evaluating compatibility issues.
Technical Paper

Pedestrian head impact testing and PCDS reconstructions

Pedestrian research and testing at the NHTSA Vehicle Research and Test Center has recently focused on assessment of proposed ISO and EEVC head impact test procedures, and extension of these procedures to additional vehicle frontal surfaces. In addition to test parameter sensitivity evaluation, reconstruction of PCDS (Pedestrian Crash Data Study) cases with laboratory impact tests and computer simulations has been conducted. This paper presents the results of this research.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for the NADS of the 1998 Chevrolet Malibu

The paper discusses the development of a model for a 1998 Chevrolet Malibu for the National Advanced Driving Simulator’s (NADS) vehicle dynamics simulation, NADSdyna. The Malibu is the third vehicle modeled for the NADS, and this is the third paper dealing with model development. SAE Paper 970564 contains details of the model for the 1994 Ford Taurus and SAE Paper 1999–01-0121 contains details of the model for the 1997 Jeep Cherokee. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid body dynamics formulations. The suspension springs and shock absorbers are modeled as elements in the rigid body formulation. To complement the vehicle dynamics for the NADS application, subsystem models that include tire forces, braking, powertrain, aerodynamics, and steering are added to the rigid body dynamics model. The models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation.
Technical Paper

Improvements in the Simulation of Unrestrained Passengers in Frontal Crashes Using Vehicle Test Data

The absence of data on the load deflection and energy absorption characteristics of vehicle interiors has been a factor which limits the accuracy of crash victim simulations. A recent test program conducted for the National Highway Traffic Safety Administration has developed data on the interactions of dashboards and knee panels with chests and knees. This paper summarizes the test results for several vehicles and shows how these results are used in simulating vehicle crash tests. Comparisons between crash tests and computer reconstruction using the 3-Dimensional Crash Victim Simulator (CVS-3D) for a late model car are included. The simulation shows good agreement with test and illustrates the application of available static and dynamic test data to improve occupant simulations.
Technical Paper

Simulation of Road Crash Facial Lacerations By Broken Windshields

The facial laceration test has been proposed as an addition to the dummy injury criteria of Federal Motor Vehicle Safety Standard 208. To better understand laceration conditions as they actually occur, three road crashes of increasing severity, all involving facial laceration by the broken (cracked) windshield and one involving partial ejection, have been simulated physically and analytically. The physical simulations used vehicle test bucks, the Hybrid III head with the chamois facial coverings of the facial laceration test, and a piston - constrained Head Impactor. Computer simulations of the three crashes were also carried out using the CALSPAN 3D “CVS” and the 2D “DRISIM” computer programs. The computer simulations provide insight into the effective mass of the head and body on windshield contact, and the forces, velocities, and accelerations involved.
Technical Paper

Finite Element Modeling of the Side Impact Dummy (SID)

A new numerical model of the side impact dummy (SID) was developed based on the DYNA3D finite element code. The model includes all of the material and structural details of SID that influence its performance in crash testing and can be run on an engineering work station in a reasonable time. This paper describes the development of the finite element model and compares model predictions of acceleration and displacements with measurements made in SID calibration experiments. Preliminary parameter studies with the model show the influence of material properties and design on the measurements made with the SID instrument.
Technical Paper

Strategies for Passenger Car Designs to Improve Occupant Protection in Real World Side Crashes

The National Highway Traffic Safety Administration (NHTSA) upgraded the side impact protection requirement in Federal Motor Vehicle Safety Standard (FMVSS) No. 214 and added dynamic requirements to reduce the likelihood of thoracic injuries in side crashes. As part of the agency's research in developing the requirements of the standard, NHTSA developed a mathematical model for simulation of side impacts. This paper investigates the overall safety performance, based on Thoracic Trauma Index (TTI) as the criteria for passenger cars in real world side crashes, with the aid of the simulation model. A Thoracic Trauma Index Factor (TTIF) is utilized to compare relative safety performance of passenger cars under various conditions of impact. The concept of relating energy dissipation in various side structure and padding countermeasures is used to develop a family of curves that are representative of a design platform.
Technical Paper

Brake System Safety Analysis

An important new technique in safety engineering for complex systems is the fault tree analysis method. The results of a motor vehicle brake system safety analysis using the fault tree technique are described. The work is directed toward the identification and ranking of brake system failure modes which may be critical as accident causation factors. Safety criticality for each failure mode is defined as the product of probability of occurrence and severity of effect on vehicle control. Failure data for the brake system components are obtained from maintenance and repair records of a large automobile leasing fleet. An effect scale is developed using a method for pooling expert judgements to obtain the relative ranking of various brake faults as to accident causation potential. The fault tree structure is employed to combine probability and effect to obtain the safety criticality value of each fault.
Technical Paper

Vehicle Structural Properties-Overview

Attention in the United States is centering on investigations of lighter materials, more efficient structures, impact compatibility between cars, as well as between structure and restraints and simulation of collisions using both mechanical and computer techniques. This paper summarizes investigations as well as safety effects.
Technical Paper

The SISAME Methodology for Extraction of Optimal Lumped Parameter Structural Crash Models

The SISAME methodology is a system for extracting one-dimensional lumped parameter vehicle crash models from non-oblique crash test data, and for simulation of such models. Model extraction is based on constrained least squares optimization of an overdetermined system of target equations for the model parameters. The SISAME computer program performs extraction and simulation with a number of features that allow user control of the computations and outputs. Additional computer programs perform data assessment/correction and filtering. Experience has shown that the SISAME methodology can efficiently produce predictively useful models that accurately capture the motions of the actual crash event. The essential formulation of SISAME and some sample applications are presented in this paper.
Technical Paper

A Statistical Analysis of Vehicle Rollover Propensity and Vehicle Stability

This report documents the accident data collection, processing and analysis methodology used by the National Highway Traffic Safety Administration (NHTSA) in a major agency agency investigation of the rollover propensity of light duty vehicles. Specifically, these efforts were initiated in response to two petitions for rulemaking requesting the development of a standard for rollover stability. Logistic regression models were used to investigate the ability of a number of stability measures to predict vehicle rollover propensity, while accounting for a number of driver and environmental factors. It is not the intent of this paper to document formal agency policy in the area of any possible rulemaking efforts, and as such, references to these activities are not discussed. The reader can obtain information on this activity through normal agency procedures.