Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

2012-04-10
Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Technical Paper

Minimization of Risks and Difficulties from DESIGN to MASS PRODUCTION for Powertrain Components and Modules

2011-04-12
2011-01-0524
One main general goal during product development in the passenger car industry as well as in the commercial vehicle industry is to reduce time to market. The customer wants to get the newest product and is not accepting the risk of any product call backs. This means the minimization of the risk of field claims for the manufacturer. The challenge to reach this goal is a capable volume production of each new product. To create a competitive, innovative product it is the task for design and simulation engineers in the development phase to design the product in view of function, efficiency, fatigue strength, optimized weight and optimized product costs. Additionally an agreement between design and industrial production planning is required. An early involvement of production engineers into the development of a product ensures design for manufacturing from the very beginning.
Technical Paper

Two-Cylinder Gasoline Engine Concept for Highly Integrated Range Extender and Hybrid Powertrain Applications

2010-09-28
2010-32-0130
The demand for improved fuel economy and the request for Zero Emission within cities require complex powertrains with an increasing level of electrification already in a short-termed timeframe until 2025. According to general expectations the demand for Mild-Hybrid powertrains will increase significantly within a broad range of implementation through all vehicle classes as well as on electric vehicles with integrated Range Extender (RE) mainly for use in urban areas. Whereas Mild Hybrid Vehicles basically use downsized combustion engines at current technology level, vehicles with a high level of powertrain electrification allow significantly different internal combustion engine (ICE) concepts. At AVL, various engine concepts have been investigated and evaluated with respect to the key criteria for a Range Extender application. A Wankel rotary engine concept as well as an inline 2 cylinder gasoline engine turned out to be most promising.
Technical Paper

CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool

2011-04-12
2011-01-0656
In the United States, intercity long-haul trucks idle approximately 1,800 hrs per year primarily for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel [1]. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working on solutions to this challenge through the CoolCab project. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. To help assess and improve idle reduction solutions, the CoolCalc software tool was developed.
Technical Paper

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024

2011-04-12
2011-01-1345
Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. Operating costs included in the calculation tool include fuel, maintenance, tires, and repairs; ownership costs include insurance, registration, taxes and fees, depreciation, financing, and tax credits.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus

2011-04-12
2011-01-0863
Plug-in hybrid electric vehicle (PHEV) technology may reduce fuel consumption and tailpipe emissions in many medium- and heavy-duty vehicle vocations, including school buses. The true magnitude of these reductions is best assessed by comparative testing over relevant drive cycles. The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data, and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation PHEV school bus equipped with a 6.4 L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. For a baseline comparison, a Bluebird 7.2 L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity.
Journal Article

Blowdown Interference on a V8 Twin-Turbocharged Engine

2011-04-12
2011-01-0337
The exhaust blowdown pulse from each cylinder of a multi-cylinder engine propagates through the exhaust manifold and can affect the in-cylinder pressure of other cylinders which have open exhaust valves. Depending on the firing interval between cylinders connected to the same exhaust manifold, this blowdown interference can affect the exhaust stroke pumping work and the exhaust pressure during overlap, which in turn affects the residual fraction in those cylinders. These blowdown interference effects are much greater for a turbocharged engine than for one which is naturally aspirated because the volume of the exhaust manifolds is minimized to improve turbocharger transient response and because the turbines restrict the flow out of the manifolds. The uneven firing order (intervals of 90°-180°-270°-180°) on each bank of a 90° V8 engine causes the blowdown interference effects to vary dramatically between cylinders.
Technical Paper

A Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services

2013-04-08
2013-01-0500
Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and battery replacement costs with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

2013-04-08
2013-01-0553
The objective of the study was to assess the impact of a Saflex1 S Series solar control PVB (polyvinyl butyral) windshield on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cooldown analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cooldown analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and solar control PVB configurations for the city and highway drive cycles.
Technical Paper

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

2013-04-08
2013-01-0381
In 2011, the United States imported almost half of its petroleum. Lightweighting vehicles reduces that dependency directly by decreasing the engine, braking and rolling resistance losses, and indirectly by enabling a smaller, more efficiently operating engine to provide the same performance. The Future Automotive Systems Technology Simulator (FASTSim) tool was used to quantify these impacts. FASTSim is the U.S. Department of Energy's (DOE's) high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It steps through a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains.
Technical Paper

Cost Comparison of Wind Energy Delivered as Electricity or Hydrogen for Vehicles

2013-04-08
2013-01-1038
A simple cost analysis framework compares hydrogen and electricity as energy carriers delivering wind energy to light-duty vehicles (LDVs). We compare four wind energy pathways within a 2040-2050 timeframe and at large scale: a dedicated electricity transmission pathway and three distinct wind-hydrogen delivery pathways. Our results suggest that wind-hydrogen pathways will tend to be more costly than pure electricity transmission pathways on a per-mile driven cost basis ($/mile), but to a greater or lesser degree depending upon the pathway. The additional cost could be warranted to the degree that the hydrogen pathway adds value to consumers through full performance fuel cell electric vehicles (FCEV) compared to plug-in electric vehicles (PEVs), or through reduced variability in wind energy supply. If these benefits add value beyond the incremental costs suggested by our simple cost framework, some shift toward co-production or even dedicated hydrogen wind farms may be warranted.
Technical Paper

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles

2013-04-08
2013-01-1453
Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.
Technical Paper

Assessing the Battery Cost at Which Plug-in Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

2013-04-08
2013-01-1450
The National Renewable Energy Laboratory (NREL) validated conventional diesel and diesel-hybrid, medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. The results build on a previous analysis that found the fuel savings from medium-duty, plug-in hybrids more than offset vehicle incremental price for future battery and fuel cost projections; however, they seldom did so under present day cost assumptions in the absence of purchase incentives.
Technical Paper

LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations

2013-04-08
2013-01-1084
A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model.
Journal Article

Effect of Accelerated Aging Rate on the Capture of Fuel-Borne Metal Impurities by Emissions Control Devices

2014-04-01
2014-01-1500
Small impurities in the fuel can have a significant impact on the emissions control system performance over the lifetime of the vehicle. Of particular interest in recent studies has been the impact of sodium, potassium, and calcium that can be introduced either through fuel constituents, such as biodiesel, or as lubricant additives. In a collaboration between the National Renewable Energy Laboratory and the Oak Ridge National Laboratory, a series of accelerated aging studies have been performed to understand the potential impact of these metals on the emissions control system. This paper explores the effect of the rate of accelerated aging on the capture of fuel-borne metal impurities in the emission control devices and the subsequent impact on performance. Aging was accelerated by doping the fuel with high levels of the metals of interest. Three separate evaluations were performed, each with a different rate of accelerated aging.
Journal Article

A Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems

2013-09-24
2013-01-2400
In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices or existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations.
Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
X