Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

Ignition and Combustion Control of Diesel HCCI

2005-05-11
2005-01-2132
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions in diesel engine. In general, high octane number fuels (gasoline components or gaseous fuels) are used for HCCI operation, because these fuels briefly form lean homogeneous mixture because of long ignition delay and high volatility. However, it is necessary to improve injection systems, when these high octane number fuels are used in diesel engine. In addition, the difficulty of controlling auto-ignition timing must be resolved. On the other hand, HCCI using diesel fuel (diesel HCCI) also needs ignition control, because diesel fuel which has a low octane number causes the early ignition before TDC. The purpose of this study is the ignition and combustion control of diesel HCCI. The effects of parameters (injection timing, injection pressure, internal/external EGR, boost pressure, and variable valve timing (VVT)) on the ignition timing of diesel HCCI were investigated.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Technical Paper

Study of the Effect of Boiling Point on Combustion and PM Emissions in a Compression Ignition Engine Using Two-Component n-Paraffin Fuels

2002-03-04
2002-01-0871
Fuel composition is investigated as a parameter influencing fuel/air mixing of direct injected fuel and the subsequent consequences for particulate emissions. Presumably, enhanced mixing prior to ignition results in a larger portion of fuel burning as a premixture and a smaller portion of diffusion burning around fuel-rich regions. This would potentially lower particulate emissions without overly compromising hydrocarbon emissions or high load operation. Using mixtures of n-paraffin fuels, particulate emissions were measured and the results were compared with in-cylinder visualization of the injection process and two-color method calculations of flame temperature. In general, lower boiling point fuels exhibited higher flame temperatures, less visible flame, and lower particulate emissions.
Technical Paper

Emission Characteristics of a Urea SCR System under Catalysts Activated and De-Activated Conditions

2006-04-03
2006-01-0639
Urea SCR (Selective Catalytic Reduction) system has high potential of reducing NOx. But such as system durability and safety under deteriorated catalysts conditions have not been well enough clarified because it is new technology for vehicles. In this paper, current NOx emission level of an engine equipped with urea SCR system is discussed and then exhaust emission characteristics were analyzed when the SCR catalyst and/or oxidation catalyst lose their functions. When both SCR and oxidation catalyst were de-activated, not only NOx but also PM increased remarkably, which were much more than the engine-out emissions. Oxidation catalyst downstream of SCR catalyst was effective to suppress such deteriorations.
Technical Paper

Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine

2004-06-08
2004-01-1966
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions from diesel engine. In general, high octane number and volatility fuels (gasoline components or gaseous fuels) are used for HCCI operation, because very lean mixture must be formed during ignition delay of the fuel. However, it is necessary to improve fuel injection systems, when these fuels are used in diesel engine. The purpose of the present study is the achievement of HCCI combustion in DI diesel engine without the large-scale improvements of engine components. Various high octane number fuels are mixed with diesel fuel as a base fuel, and the mixed fuels are directly applied to DI diesel engine. At first, the cylinder pressure and heat release rate of each mixed fuel are analyzed. The ignition delay of HCCI operation decreases with an increase in the operation load, although that of conventional diesel operation does not almost varied.
Technical Paper

Effect of Boiling Point Differences of Two-Component Normal Paraffin Fuels on Combustion and Emission in CI Engines

2003-03-03
2003-01-0757
The effect of boiling point difference as well as the flash boiling of two-component normal paraffin fuels on combustion and exhaust emission has been examined under different test conditions. To obtain a wide variation in boiling point between components different high boiling point fuels (n-undecane, n-tridecane and n-hexadecane) were blended with a low boiling point fuel (n-pentane) and different low boiling point fuels (n-pentane, n-hexane, and n-heptane) were blended with a high boiling point fuel (n-hexadecane). In addition the volume fraction of n-pentane was varied to have the best mixture ratio with n-tridecane. These fuel combinations exhibit different potential for flash boiling based on a certain ambient condition. The results indicate that though the potential for flash boiling is the highest for a mixture of n-pentane and n-hexadecane it emits about 20% higher PM than a mixture of n-pentane and n-tridecane.
X