Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A New Type Partial Flow Dilution Tunnel with Geometrical Partitioning for Diesel Particulate Measurement

2001-09-24
2001-01-3579
The authors have developed a new partial flow dilution tunnel (hereafter referred to as PPFT), whose principal device is a flux splitting gas divider, as a new means of measuring particulate emissions which can be applied to transient cycle testing of diesel engines. The advantage of this system is that it can achieve perfect constant velocity splitting by means of its structure, and theoretically can also maintain high splitting performance despite fluctuations in the exhaust flow rate, including those due to engine exhaust pulsation. We compared this system with a full tunnel by analyzing the basic performance of the system and measuring particulate matter (PM) using an actual vehicle engine.
Technical Paper

PM Measurement with Partial Dilution Tunnel - Influence of Sampling Line on PM Measurement -

2001-09-24
2001-01-3580
The full-flow dilution tunnel (hereinafter referred to as full tunnel) measurement method has become the de facto standard for the evaluation of particulate matter (hereinafter referred to as PM) emitted from diesel-powered vehicles. However, due to its drawbacks such as bulkiness and expensiveness, a method that uses a very small partial dilution tunnel (hereinafter referred to as micro tunnel) has been developed, mainly in Europe, nearly to the level of practicality. With this method, a higher degree of freedom in controlling sampling flow and temperature can be obtained. Another advantage of the micro tunnel is that the system is compact. However, the micro tunnel's measurement accuracy remains uncertain because the accumulation of measurement data is not yet sufficient. Measuring PM while varying micro tunnel operating parameters permitted a check on the equivalency with a full tunnel system.
Technical Paper

Evaluation Method for HDV Fuel Economy Performance with PC Simulation and Mapping Procedure

2003-05-19
2003-01-2010
As countermeasures against global warming caused by carbon dioxide, improvement of automotive fuel economy to lower CO2 emission becomes important. In order to promote less CO2 vehicles, appropriate methods to evaluate vehicle fuel economy performance are needed. However, the existing fuel economy test is limited to passenger cars and light duty trucks. The test is executed on a chassis dynamometer. However, if this test method is applied to heavy-duty vehicles (HDV), a large sized chassis dynamometer is needed. Furthermore, heavy duty vehicles have wide variations in a combination of an equipped engine, body shape, a transmission gear, a permissible limit of pay load, and so on. This leads to the increase in the number of chassis dynamometer tests. Therefore, it is difficult to use chassis dynamometer test to evaluate HDV fuel economy performance.
X