Refine Your Search

Topic

Author

Search Results

Journal Article

A Study of HCCI Combustion using Spectroscopic Techniques and Chemical Kinetic Simulations

2009-11-03
2009-32-0070
This study was conducted to investigate the influence of low-temperature reactions on the Homogeneous Charge Compression Ignition (HCCI) combustion process. Specifically, an investigation was made of the effect of the residual gas condition on low-temperature reactions, autoignition and the subsequent state of combustion following ignition. Light emission and absorption spectroscopic measurements were made in the combustion chamber in order to investigate low-temperature reactions in detail. In addition, chemical kinetic simulations were performed to validate the experimental results and to analyze the elemental reaction process. The results made clear the formation behavior of the chemical species produced during low-temperature HCCI reactions.
Technical Paper

A Study of IDI 2-Stroke Cycle Compression Ignition Engine with DME

2009-11-03
2009-32-0063
DME is alternate fuel for diesel engines, however DME has defects such as small lower calorific value, inferior lubricity and weak fuel penetration. To compensate disadvantages, In-direct injection 2-stroke diesel engine with low pressure fuel injection system was proposed. The fuel injection timing near TDC gave good performance because the heat loss of low temperature oxidation reaction reduced. The brake torque and brake thermal efficiency of 2-stroke IDI diesel engine were lower than those of 4-stroke engine. However, the exhaust gas emissions were very low level because the intake air leaked through the exhaust port and the exhaust gas was diluted.
Journal Article

The Influence of Hot Gas Jet on Combustion Enhancement for Lean Mixture in Plasma Jet Ignition

2012-10-23
2012-32-0001
This study clarified the influence of hot gas jet on combustion enhancement effect for lean mixture in the plasma jet ignition. The hot gas jet was generated by the high temperature plasma and was ejected from igniter after plasma jet finished issuing. In combustion tests, propane-air mixture at equivalence ratio of 0.6 was used and the mixture was filled in the combustion chamber at atmosphere pressure and room temperature. For generation of the hot gas jet, the standard air was filled in chamber at same conditions and the hot gas jet was visualized by schlieren method in the absence of combustion. The combustion development processes were also visualized and the combustion pressure was measured. The discharge voltage, discharge current and the plasma luminescence were also measured. The plasma luminescence disappeared within 0.05 ms for any experimental conditions. When cavity depth was deep and orifice diameter was small, the maximum plasma luminescence height was short.
Technical Paper

Analysis of the Effects of a Higher Compression Ratio on HCCI Combustion Characteristics using In-cylinder Visualization and Spectroscopic Measurement

2012-10-23
2012-32-0078
Homogenous Charge Compression Ignition (HCCI) combustion experiments were conducted in this study using a single-cylinder test engine fitted with a sapphire observation window to facilitate visualization of the entire cylinder bore area. In addition to in-cylinder visualization of combustion, spectroscopic measurements were made of light emission and absorption in the combustion chamber to investigate autoignition behavior in detail. Engine firing experiments were conducted to visualize HCCI combustion over a wide range of compression ratios from 12:1 to 22:1. The results showed that increasing the compression ratio advanced the ignition timing and increased the maximum pressure rise rate, making it necessary to moderate combustion. It was also found that autoignition can be induced even in a mixture lean enough to cause misfiring by raising the intake air temperature so as to advance the overall combustion process.
Technical Paper

A Study of the Mechanism Producing Autoignition in an HCCI Engine Using In-Cylinder Spectroscopy and Chemical Kinetic Simulation

2012-10-23
2012-32-0079
This study examined Homogeneous Charge Compression Ignition (HCCI) combustion characteristics in detail on the basis of in-cylinder combustion visualization, spectroscopic measurements of light emission and absorption and chemical kinetic simulations. Special attention was focused on investigating and comparing the effects of the fuel octane number and residual gas on combustion characteristics. The results made clear the relationship between the production/consumption of formaldehyde (HCHO) in the HCCI autoignition process and flame development behavior in the cylinder. Additionally, it was found that both the fuel octane number and residual gas have the effect of moderating low-temperature oxidation reactions. Furthermore, it was observed that residual gas has the effect of shifting the temperature for the occurrence of the hot flame to a higher temperature range.
Technical Paper

A Spectroscopic Study of the Effects of Multicomponent Fuel Blends on Supercharged HCCI Combustion

2012-10-23
2012-32-0080
The growing severity of global environmental issues in recent years, including air pollution and the depletion of fossil fuels, has made it necessary for internal combustion engines to achieve higher efficiency and lower exhaust emission levels. Calls for reducing atmospheric emissions of carbon dioxide (CO₂) necessitate thoroughgoing measures to lower the levels of CO₂ originating in the combustion process of internal combustion engines and to facilitate operation on diverse energy sources. Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. These characteristics are obtainable because HCCI combustion can take place at ultra-lean conditions exceeding the limits of flame propagation.
Journal Article

Analysis of Combustion Characteristics and Efficiency Improvement of a Supercharged HCCI Engine Achieved by Using the Different Ignition Characteristics of Gaseous Fuels

2012-10-23
2012-32-0075
This study focused on the use of a two-component fuel blend and supercharging as possible means of overcoming these issues of HCCI combustion. Low-carbon gaseous fuels with clean emissions were used as the test fuels. The specific fuels used were dimethyl ether (DME, cetane number of 55 or higher) that autoignites easily And exhibits pronounced low-temperature oxidation reactions, methane (cetane number of 0) that does not autoignite readily and is the main component of natural gas which is regarded as petroleum substitute, and propane (cetane number of 5) that is a principal component of liquefied petroleum gas. The results of previous investigations have shown that the use of a blended fuel of DME and methane produces a two-stage main combustion process under certain operating conditions, with the result that combustion is moderated.
Journal Article

Analysis of Supercharged HCCI Combustion Using a Blended Fuel

2011-11-08
2011-32-0521
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted much interest as a combustion system that can achieve both low emissions and high efficiency. But the operating region of HCCI combustion is narrow, and it is difficult to control the auto-ignition timing. This study focused on the use of a two-component fuel blend and supercharging. The blended fuel consisted of dimethyl ether (DME), which has attracted interest as alternative fuel for compression-ignition engines, and methane, the main component of natural gas. A spectroscopic technique was used to measure the light emission of the combustion flame in the combustion chamber in order to ascertain the combustion characteristics. HCCI combustion characteristics were analyzed in detail in the present study by measuring this light emission spectrum.
Technical Paper

Analysis of Knocking in an SI Engine based on In-cylinder: Spectroscopic Measurements and Visualization

2010-09-28
2010-32-0092
There are strong demands today to further improve the thermal efficiency of internal combustion engines against a backdrop of various environmental issues, including rising carbon dioxide (CO2) emissions and global warming. One factor that impedes efforts to improve the thermal efficiency of spark ignition engines is the occurrence of knocking. The aim of this study was to elucidate the details of knocking based on spectroscopic measurements and visualization of phenomena in the combustion chamber of a test engine that was operated on three primary reference fuels with different octane ratings (0 RON, 30 RON, and 50 RON). The ignition timing was retarded in the experiments to delay the progress of flame propagation, making it easier to capture the behavior of low-temperature oxidation reactions at the time knocking occurred.
Journal Article

A Study of Ignition Characteristics of an HCCI Engine Operating on a Two-component Fuel

2010-09-28
2010-32-0098
The Homogenous Charge Compression Ignition (HCCI) engine is positioned as a next-generation internal combustion engine and has been the focus of extensive research in recent years to develop a practical system. One reason is that this new combustion system achieves lower fuel consumption and simultaneous reductions of nitrogen oxide (NOx) and particulate matter (PM) emissions, which are major issues of internal combustion engines today. However, the characteristics of HCCI combustion can prevent suitable engine operation owing to the rapid combustion process that occurs accompanied by a steep pressure rise when the amount of fuel injected is increased to obtain higher power output. A major issue of HCCI is to control this rapid combustion so that the quantity of fuel injected can be increased for greater power. Controlling the ignition timing is also an issue because it is substantially influenced by the chemical reactions of the fuel.
Journal Article

Optical Measurement of Autoignition and Combustion Behavior in an HCCI Engine

2010-09-28
2010-32-0089
In this study, optical measurements were made of the combustion chamber gas during operation of a Homogeneous Charge Compression Ignition (HCCI) engine in order to obtain a better understanding of the ignition and combustion characteristics. The principal issues of HCCI engines are to control the ignition timing and to optimize the combustion state following ignition. Autoignition in HCCI engines is strongly influenced by the complex low-temperature oxidation reaction process, alternatively referred to as the cool flame reaction or negative temperature coefficient (NTC) region. Accordingly, a good understanding of this low-temperature oxidation reaction process is indispensable to ignition timing control. In the experiments, spectroscopic measurement methods were applied to investigate the reaction behavior in the process leading to autoignition.
Technical Paper

Scenario Analysis of Near-miss Incidents to Enhance Pedestrian Collision Warning System

2015-03-10
2015-01-0032
First, this paper focuses on classification of near-miss incidents with pedestrian into typical scenarios, and then incident data are analyzed under the assumption that pedestrian detection system has a pre-determinant sensing performance. The data of 220 near-miss incidents with pedestrian when own vehicle goes straight are employed. We proposed a set of eight scenarios which structure is not necessarily hierarchical. The eight scenarios cover about 75% of the incidents. To highlight the characteristics of the eight scenarios, two kinds of vector-diagrams are introduced which illustrate the transition of relative position between pedestrian and own-vehicle, and TTC-TTV (Time To Collision - Time To Vehicle) relation respectively. For example, in a relative position diagram, we can grasp the pedestrian's relative position which the detection system finds the pedestrian first when he/she appeared with pre-determinant wide detection angle.
Technical Paper

One Approach to Definition of MSILs and Their Connections with ASILs

2014-11-11
2014-32-0016
ISO 26262 (Road vehicles - Functional safety), a functional safety standard for motor vehicles, was published in November 2011. In this standard, hazardous events associated with each item constituting a safety-related system are assessed according to three criteria, namely, Severity, Exposure, and Controllability, thereby determining ASILs (Automotive Safety Integrity Levels) representing safety levels for motor vehicles. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply ASILs to motorcycles. In the first place, the situation of usage in practice presumably differs between motorcycles and motor vehicles. Accordingly, in this research, we attempted to newly define Motorcycle Safety Integrity Levels (MSILs).
Technical Paper

A Study of HCCI Combustion Assisted by a Streamer Discharge Based on Visualization of the Entire Bore Area

2014-11-11
2014-32-0001
This study investigated the effect of streamer discharge on autoignition and combustion in a Homogeneous Charge Compression Ignition (HCCI) engine. A continuous streamer discharge was generated in the center of the combustion chamber of a 2-stroke optically accessible engine that allowed visualization of the entire bore area. The experimental results showed that the flame was initiated and grew from the vicinity of the electrode under the application of a streamer discharge. Subsequently, rapid autoignition (HCCI combustion) occurred in the unburned mixture in the end zone, thus indicating that HCCI combustion was accomplished assisted by the streamer discharge. In other word, ignition timing of HCCI combustion was advanced after the streamer discharging process, and the initiation behavior of the combustion flame was made clear under that condition.
Technical Paper

The Fuel Injection System Using the High-Voltage Electrical Discharge

2005-10-12
2005-32-0075
The new fuel injection method which is using the high-voltage electrical discharge has been proposed. The plasma jet ignition technology is applied to this injection system, and the component parts of fuel injector are similar to the plasma jet igniter. The purpose of this study is to elucidate the spray characteristics and the fuel injection development processes of this injection method. To obtain the influence of injector configuration and supplied electrical discharge energy on the fuel spray, the fuel is ejected into the open atmosphere and fuel injection development process is visualized by the schlieren method. The penetration depth, maximum width and projected area of fuel spay increase with increasing in the electrical discharge energy and an orifice diameter. In the case at which the large electrical discharge energy is provided, the fuel injection is finished within a short duration and the mean fuel spray velocity becomes fast.
Technical Paper

The Influence of High Voltage Electrical Field on the Flame Propagation

2005-10-12
2005-32-0074
The purpose of this study is to elucidate the development process of hot kernel generated by the laser induced breakdown and to clarify the relationship between corona discharge application and flame propagation. The mixture can be ignited by the laser induced breakdown. Nd:YAG laser is used for the ignition and laser light is optically focused on the central part of combustion chamber by a plano convex lens. The hot kernel is observed in the absence of combustion and is rapidly developed into the laser incidence side. The homogeneous propane-air mixture is used and six equivalence ratios between 0.7 and 1.5 are tested. For generating the positive corona discharge in the combustion chamber, a non-uniform electric field is applied by the needle to plane gap. In a lean mixture, the whole flame front shifts to downward from the breakdown point and, in the rich mixture region, the combustion is strongly enhanced.
Technical Paper

Effectiveness Verification of Practice Using the Simple Motorcycle Simulator

2005-10-12
2005-32-0080
The educational systems for driving vehicle are recently progressing every year like aircraft simulator. To know the learning process of training are very important for designing total education system. Therefore this research considers the methodologies of measuring human learning process when the beginner rider practicing by using motorcycle simulator. Here, a motorcycle needs the proper manipulating practice in the event of first riding because the manipulation use both hands and feet with keeping balance. For this reason in this paper it is considered the methodologies of measuring rider learning effectiveness by recording rider behavior and motorcycle movement.
Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

Influences of Compression Ratio and Methane Additive on Combustion Characteristics in a DME-HCCI Engine

2005-10-24
2005-01-3745
In this study, a spectroscopic method was used to measure the combustion characteristics of a test diesel engine when operated on dimethyl ether (DME) under a homogenous charge compression ignition (HCCI) combustion process. A numerical analysis was made of the elementary reactions using Chemkin 4.0 to perform the calculations. The results of the analysis showed that compression ratio changes and the methane additive influenced the autoignition timing in the DME-HCCI combustion process. In the experiments, reducing the compression ratio delayed the time of the peak cylinder pressure until after top dead center, thereby increasing the crankshaft output and thermal efficiency. The addition of methane enabled the DME-HCCI engine to provide crankshaft output equivalent to that seen for diesel engine operation at a low equivalence ratio. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

A Comparative Study of HCCI and ATAC Combustion Characteristics Based on Experimentation and Simulations Influence of the Fuel Octane Number and Internal EGR on Combustion

2005-10-24
2005-01-3732
Controlled Autoignition (CAI) combustion processes can be broadly divided between a CAI process that is applied to four-stroke engines and a CAI process that is applied to two-stroke engines. The former process is generally referred to as Homogeneous Charge Compression Ignition (HCCI) combustion and the later process as Active Thermo-Atmosphere Combustion (ATAC). The region of stable engine operation differs greatly between these two processes, and it is thought that the elucidation of their differences and similarities could provide useful information for expanding the operation region of HCCI combustion. In this research, the same two-stroke engine was operated under both the ATAC and HCCI combustion processes to compare their respective combustion characteristics. The results indicated that the ignition timing was less likely to change in the ATAC process in relation to changes in the fuel octane number than it was in the HCCI combustion process.
X