Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Reliability Analysis Using Monte Carlo Simulation and Response Surface Methods

An accurate and efficient Monte Carlo simulation (MCS) method is developed in this paper for limit state-based reliability analysis, especially at system levels, by using a response surface approximation of the failure indicator function. The Moving Least Squares (MLS) method is used to construct the response surface of the indicator function, along with an Optimum Symmetric Latin Hypercube (OSLH) as the sampling technique. Similar to MCS, the proposed method can easily handle implicit, highly nonlinear limit-state functions, with variables of any statistical distributions and correlations. However, the efficiency of MCS can be greatly improved. The method appears to be particularly efficient for multiple limit state and multiple design point problem. A mathematical example and a practical example are used to highlight the superior accuracy and efficiency of the proposed method over traditional reliability methods.
Technical Paper

Simulation-Based Reliability Analysis of Automotive Wind Noise Quality

An efficient simulation-based method is proposed for the reliability analysis of a vehicle body-door subsystem with respect to an important quality issue -- wind noise. A nonlinear seal model is constructed for the automotive wind noise problem and the limit state function is evaluated using finite element analysis. Existing analytical as well as simulation-based methods are used to solve this problem. A multi-modal adaptive importance sampling method is then developed for reliability analysis at system level. It is demonstrated through this industrial application problem that the multi-modal adaptive importance sampling method is superior to existing methods in terms of efficiency and accuracy. The method can easily handle implicit limit-state functions, with variables of any statistical distributions.