Refine Your Search


Search Results

Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Technical Paper

Addressing Drivability in an Extended Range Electric Vehicle Running an Equivalent Consumption Minimization Strategy (ECMS)

The EcoCAR Challenge team at The Ohio State University has designed an extended-range electric vehicle capable of 50 miles all-electric range via a 22 kWh lithium-ion battery pack, with range extension and limited parallel operation supplied by a 1.8 L dedicated E85 engine. This vehicle is designed to drastically reduce fuel consumption, while meeting Tier II Bin 5 emissions standards. This vehicle design is implemented in a GM crossover utility vehicle as part of the EcoCAR Challenge. This paper explains the implementation of the vehicle's control strategy in order to maintain high efficiency and improve drivability. The vehicle control strategy employs both distinct operating modes and an Equivalent Consumption Minimization Strategy (ECMS) to find the most efficient operating point. The ECMS strategy does an online search for the most efficient torque split in order to meet the driver's command.
Journal Article

Advanced Control Strategies for a Roll Simulator - A Feedback Linearization Technique Explored

This paper presents a feedback linearization control technique as applied to a Roll Simulator. The purpose of the Roll Simulator is to reproduce in-field rollovers of ROVs and study occupant kinematics in a laboratory setting. For a system with known parameters, non-linear dynamics and trajectories, the feedback linearization algorithm cancels out the non-linearities such that the closed-loop dynamics behave in a linear fashion. The control inputs are computed values that are needed to attain certain desired motions. The computed values are a form of inverse dynamics or feed-forward calculation. With increasing system eigenvalue, the controller exhibits greater response time. This, however, puts a greater demand on the translational actuator. The controller also demonstrates that it is able to compensate for and reject a disturbance in force level.
Technical Paper

Micro-Texture Tailored Friction Modeling and Discrete Application in Drawability Improvement

Friction plays an important role in the deep drawing process. Previous research shows friction condition can be tailored by applying micro-textures on tooling surfaces. A friction model is proposed to reveal the mechanism of altering friction condition by configuring micro-texture. A discrete friction concept is proposed to improve drawability of sheet metal and demonstrates numerically on a non-symmetric geometry drawing process.
Technical Paper

Establishing Occupant Response Metrics on a Roll Simulator

This paper presents the results of an in-depth study of the measurement of occupant kinematic response on the S-E-A Roll Simulator. This roll simulator was built to provide an accurate and repeatable test procedure for the evaluation of occupant protection and restraint systems during roll events within a variety of occupant compartments. In the present work this roll simulator was utilized for minimum-energy, or threshold type, rollover events of recreational off-highway vehicles (ROVs). Input profiles for these tests were obtained through a separate study involving autonomous full vehicle tests [1]. During simulated roll events anthropomorphic test device (ATD) responses were measured using on-board high speed video, an optical three-dimensional motion capture system (OCMS) and an array of string potentiometers.
Technical Paper

Validation of a Roll Simulator for Recreational Off-Highway Vehicles

A two-degree-of-freedom Roll Simulator has been developed to study the occupant kinematics of Recreational Off-Highway Vehicles (ROVs). To validate the roll simulator, test data was collected on a population of ROVs on the market today. J-turn maneuvers were performed to find the minimum energy limits required to tip up the vehicles. Two sets of tests were performed: for the first set, 10 vehicles were tested, where the motion was limited by safety outriggers to 10-15 degrees of roll; and for the second set, three of these vehicles were re-tested with outriggers removed and the vehicle motion allowed to reach 90 degrees of roll. These quarter-turn rollover tests were performed autonomously using an Automatic Steering Controller (ASC) and a Brake and Throttle Robot (BTR). Lateral and longitudinal accelerations as well as roll rate and roll angle were recorded for all tests.
Technical Paper

The Impact of Injection Timing on In-Cylinder Fuel Distribution in a Natural Gas Powered Engine

One obstacle hindering the use of port fuel injection in natural gas engines is poor idle performance due to incomplete mixing of the cylinder charge prior to ignition. Fuel injection timing has a strong influence on the mixing process. The purpose of this work is to determine the impact of fuel injection timing on in-cylinder fuel distribution. Equivalence ratio maps have been acquired by Planar Laser Induced Fluorescence in an optical engine with a production cylinder head. Experimental results have been used to determine the injection timing which produces the most uniform fuel distribution for the given engine.
Technical Paper

Plasma-Enhanced Catalysis for Automotive Exhausts

This paper presents a concept for enhancing catalytic removal of pollutant species from an exhaust stream by placing placing the plasma adjacent to the catalyst surface. Model calculations of the behavior of the electron energy distribution function (EEDF), which influences the chemistry and ionization levels near the surface, are performed and analyzed. Preliminary experiments attempting to reduce these theoretical ideas to practice in N2/NO mixtures, are discussed. Although removal of NO is observed, this is due to gas phase effects alone. The present experimental arrangement is not able to produce the requisite conditions outlined by theory to enact plasma-enhanced catalysis.
Technical Paper

Pedestrian head impact testing and PCDS reconstructions

Pedestrian research and testing at the NHTSA Vehicle Research and Test Center has recently focused on assessment of proposed ISO and EEVC head impact test procedures, and extension of these procedures to additional vehicle frontal surfaces. In addition to test parameter sensitivity evaluation, reconstruction of PCDS (Pedestrian Crash Data Study) cases with laboratory impact tests and computer simulations has been conducted. This paper presents the results of this research.
Technical Paper

IVHS~Ohio: A state initiative

The state of Ohio has recognized the importance and potential impact of Intelligent Vehicle-Highway Systems (IVHS) to its citizens and business enterprises. In response to the identified need, a small group of individuals representing Federal and state government, academia, and the private sector have worked together over the past year to initiate a statewide IVHS effort. This initiative is referred to as IVHS~Ohio. The objective of the effort is to "coordinate and foster a public, private, and academic partnership to make the urban and rural surface transportation system in the state of Ohio significantly safer, more effective, and more efficient by accelerating the identification, development, integration, and deployment of IVHS technologies." A May 1993 symposium was attended by over 220 people from government, academia, and the private sector. The result was a unanimous decision to establish a statewide IVHS program.
Technical Paper

A Survey of Automotive Diagnostic Equipment and Procedures

The introduction of advanced electronic controls in passenger vehicles over the last decade has made traditional diagnostic methods inadequate to satisfy on- and off-board diagnostic needs. Due to the complexity of today's automotive control systems, it is imperative that appropriate diagnostic tools be developed that are capable of satisfying current and projected service and on-board requirements. The performance of available diagnostic and test equipment is still amenable to further improvement, especially as it pertains to the diagnosis of incipient and intermittent faults. It is our contention that significant improvement is possible in these areas. This paper briefly summarizes the evolution of on- and off-board diagnostic tools documented in the published literature, with the aim of giving the reader an understanding of their capabilities and limitations, and it further proposes alternative solutions that may be adopted as a basis for an advanced diagnostic instrument.
Technical Paper

A Comprehensive Review of Pedestrian Impact Reconstruction

This paper presents a review on pedestrian impact reconstruction methodology and offers a comprehensive review of the literature. Several types of analyses are discussed which can be used to reconstruct the accident scenario using the facts collected from the scene. Inclusive in this review is the utilization of skid mark analysis, debris analysis, injury/damage match-up, trajectory analysis, nighttime visibility, and alcohol effects. The pedestrian impact reconstruction methodology is illustrated with a real world case example to point out different observations which can provide insight into the pedestrian/vehicle collision reconstruction approach. The literature review provides a broad foundation of information on pedestrian impact reconstruction and can be used to supplement the techniques presented in this paper in areas related to pedestrian impact. Research advances in the area of pedestrian impact reconstruction are also discussed in this paper.
Technical Paper

Empirical-Numerical Simulation Technique for Improving the Quality of Rolled Rods by Roll Pass Design

Improper roll pass designs can lead to either underfill which results in the formation of hairline cracks on the surface of the finished bars or overfill which results in roll overloading and the formation of fins. Therefore to reduce downtime, and improve yield and quality, it becomes important to design an acceptable roll pass in reasonable time. This paper presents a methodology for roll pass design which uses a three dimensional finite element technique along with an empirical procedure to arrive at an iterative scheme for reducing the number of passes and improving metal flow in the passes. This methodology is applied to improving an existing seven pass square - to - round rolling sequence, resulting in the reduction of the number of passes and improved distributions of effective strains in the rolled product.
Technical Paper

NVH Research Facilities at The Ohio State University: Existing Facilities and Envisioned Enhancements

The automotive NVH research infrastructure at Ohio State includes the Center for Automotive Research, the Acoustics and Dynamics Laboratory, and the Gear Dynamics and Gear Noise Research Laboratory. This paper describes the facilities of these laboratories. Two unique existing facilities, namely the transmission error measurement of gears and a laboratory for the experimental measurement of engine breathing systems, will be emphasized. Also covered are the enhancements that are envisioned through a recent grant from the Ohio Board of Regents.
Technical Paper

Welding Residual Stresses in Splicing Heavy Section Shapes

Welding residual stress is one of the primary factors responsible for cracking at the access hole interface between the flange and web plate of welded heavy W-shapes. During multi-pass welding, cracks can be found in either the flange plate or the web plate, depending upon welding sequence, joint details and access hole size. In this study, an integrated numerical and experimental investigation was conducted to evaluate the effects of welding parameters and joint geometry on the magnitude and distribution of residual stresses in thick-section butt joints. The results provide guidelines for improved design for welding of heavy W-shapes.
Technical Paper

The Application of Fuzzy Logic to the Diagnosis of Automotive Systems

The evolution of the diagnostic equipment for automotive application is the direct effect of the implementation of sophisticated and high technology control systems in the new generation of passenger cars. One of the most challenging issues in automotive diagnostics is the ability to assess, to analyze, and to integrate all the information and data supplied by the vehicle's on-board computer. The data available might be in the form of fault codes or sensors and actuators voltages. Moreover, as environmental regulations get more stringent, knowledge of the concentration of different species emitted from the tailpipe during the inspection and maintenance programs can become of great importance for an integrated powertrain diagnostic system. A knowledge-based diagnostic tool is one of the approaches that can be adopted to carry out the challenging task of detecting and diagnosing faults related to the emissions control system in an automobile.
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
Technical Paper

Improving Steering Feel for the National Advanced Driving Simulator

The National Highway Traffic Safety Administration's Vehicle Research and Test Center (VRTC) plans to evolve the state-of-the-art of steering system modeling for driving simulators with the ultimate goal being the development of a high fidelity steering feel model for the National Advanced Driving Simulator (NADS). The VRTC plans on developing reliable research tools that can be used to determine the necessary features for a steering model that will provide good objective and subjective steering feel. This paper reviews past and continuing work conducted at the VRTC and provides a plan for future work that will achieve this goal.
Technical Paper

Analysis of Off-Line of Action Contact at the Tips of Gear Teeth

A mathematical basis for predicting loaded off-line of action contact at the tips of undermodified gear teeth is discussed. Two methods of solving the contact problem, using a modified simplex algorithm, are used to predict the load distribution. The methods differ in the compliance matrix formulation and the way they search for contact. The first method uses a tapered plate model and the second method uses a finite element model. The effects of off-line of action contact on load sharing, effective contact ratio and motion curves are shown.
Technical Paper

Soil Compaction of Four-Wheel Drive and Tracked Tractors Under Various Draft Loads

The soil response to traffic loads as affected by tire inflation pressure, track width and drawbar pull was measured. The change in soil physical properties caused by a John Deere 8870 tractor at two tire pressure settings and CATERPILLAR Challenger 65 and 75 tractors with 64 and 89 cm wide belt tracks, were measured at two load levels; no draft (tractor only) and tractor pulling a 12.5 m field cultivator. The Ohio State University Soil Physical Properties Measurement System was used to measure cone penetration resistance, air permeability, air-filled porosity, and bulk density. The results show the dual overinflated tires caused the greatest change, followed by the CATERPILLAR Challenger 65 track, then the CATERPILLAR Challenger 75 track, and finally dual correctly inflated tires caused the least effect on soil physical properties. These results were consistent at each depth. The effects of the two draft levels give the same ranking of the tractive units.