Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics

2015-06-15
2015-01-2189
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
Journal Article

Advanced Control Strategies for a Roll Simulator - A Feedback Linearization Technique Explored

2013-04-08
2013-01-0683
This paper presents a feedback linearization control technique as applied to a Roll Simulator. The purpose of the Roll Simulator is to reproduce in-field rollovers of ROVs and study occupant kinematics in a laboratory setting. For a system with known parameters, non-linear dynamics and trajectories, the feedback linearization algorithm cancels out the non-linearities such that the closed-loop dynamics behave in a linear fashion. The control inputs are computed values that are needed to attain certain desired motions. The computed values are a form of inverse dynamics or feed-forward calculation. With increasing system eigenvalue, the controller exhibits greater response time. This, however, puts a greater demand on the translational actuator. The controller also demonstrates that it is able to compensate for and reject a disturbance in force level.
Technical Paper

Simulation Results from a Model of a Tractor Trailer Vehicle Equipped with Roll Stability Control

2010-04-12
2010-01-0098
In 2007, a software model of a Roll Stability Control (RSC) system was developed based on test data for a Volvo tractor at NHTSA's Vehicle Research and Test Center (VRTC). This model was designed to simulate the RSC performance of a commercially available Electronic Stability Control (ESC) system. The RSC model was developed in Simulink and integrated with the available braking model (TruckSim) for the truck. The Simulink models were run in parallel with the vehicle dynamics model of a truck in TruckSim. The complete vehicle model including the RSC system model is used to simulate the behavior of the actual truck and determine the capability of the RSC system in preventing rollovers under different conditions. Several simulations were performed to study the behavior of the model developed and to compare its performance with that of an actual test vehicle equipped with RSC.
Technical Paper

Validation and Enhancement of a Heavy Truck Simulation Model with an Electronic Stability Control Model

2010-04-12
2010-01-0104
Validation was performed on an existing heavy truck vehicle dynamics computer model with roll stability control (RSC). The first stage in this validation was to compare the response of the simulated tractor to that of the experimental tractor. By looking at the steady-state gains of the tractor, adjustments were made to the model to more closely match the experimental results. These adjustments included suspension and steering compliances, as well as auxiliary roll moment modifications. Once the validation of the truck tractor was completed for the current configuration, the existing 53-foot box trailer model was added to the vehicle model. The next stage in experimental validation for the current tractor-trailer model was to incorporate suspension compliances and modify the auxiliary roll stiffness to more closely model the experimental response of the vehicle. The final validation stage was to implement some minor modifications to the existing RSC model.
Technical Paper

Empirical-Numerical Simulation Technique for Improving the Quality of Rolled Rods by Roll Pass Design

1992-02-01
920783
Improper roll pass designs can lead to either underfill which results in the formation of hairline cracks on the surface of the finished bars or overfill which results in roll overloading and the formation of fins. Therefore to reduce downtime, and improve yield and quality, it becomes important to design an acceptable roll pass in reasonable time. This paper presents a methodology for roll pass design which uses a three dimensional finite element technique along with an empirical procedure to arrive at an iterative scheme for reducing the number of passes and improving metal flow in the passes. This methodology is applied to improving an existing seven pass square - to - round rolling sequence, resulting in the reduction of the number of passes and improved distributions of effective strains in the rolled product.
Technical Paper

Establishing Occupant Response Metrics on a Roll Simulator

2012-04-16
2012-01-0099
This paper presents the results of an in-depth study of the measurement of occupant kinematic response on the S-E-A Roll Simulator. This roll simulator was built to provide an accurate and repeatable test procedure for the evaluation of occupant protection and restraint systems during roll events within a variety of occupant compartments. In the present work this roll simulator was utilized for minimum-energy, or threshold type, rollover events of recreational off-highway vehicles (ROVs). Input profiles for these tests were obtained through a separate study involving autonomous full vehicle tests [1]. During simulated roll events anthropomorphic test device (ATD) responses were measured using on-board high speed video, an optical three-dimensional motion capture system (OCMS) and an array of string potentiometers.
Technical Paper

Analysis of Off-Line of Action Contact at the Tips of Gear Teeth

1994-09-01
941761
A mathematical basis for predicting loaded off-line of action contact at the tips of undermodified gear teeth is discussed. Two methods of solving the contact problem, using a modified simplex algorithm, are used to predict the load distribution. The methods differ in the compliance matrix formulation and the way they search for contact. The first method uses a tapered plate model and the second method uses a finite element model. The effects of off-line of action contact on load sharing, effective contact ratio and motion curves are shown.
Technical Paper

Plasma-Enhanced Catalysis for Automotive Exhausts

1997-05-01
971719
This paper presents a concept for enhancing catalytic removal of pollutant species from an exhaust stream by placing placing the plasma adjacent to the catalyst surface. Model calculations of the behavior of the electron energy distribution function (EEDF), which influences the chemistry and ionization levels near the surface, are performed and analyzed. Preliminary experiments attempting to reduce these theoretical ideas to practice in N2/NO mixtures, are discussed. Although removal of NO is observed, this is due to gas phase effects alone. The present experimental arrangement is not able to produce the requisite conditions outlined by theory to enact plasma-enhanced catalysis.
Technical Paper

The Impact of Injection Timing on In-Cylinder Fuel Distribution in a Natural Gas Powered Engine

1997-05-01
971708
One obstacle hindering the use of port fuel injection in natural gas engines is poor idle performance due to incomplete mixing of the cylinder charge prior to ignition. Fuel injection timing has a strong influence on the mixing process. The purpose of this work is to determine the impact of fuel injection timing on in-cylinder fuel distribution. Equivalence ratio maps have been acquired by Planar Laser Induced Fluorescence in an optical engine with a production cylinder head. Experimental results have been used to determine the injection timing which produces the most uniform fuel distribution for the given engine.
Technical Paper

Welding Residual Stresses in Splicing Heavy Section Shapes

1997-04-07
971585
Welding residual stress is one of the primary factors responsible for cracking at the access hole interface between the flange and web plate of welded heavy W-shapes. During multi-pass welding, cracks can be found in either the flange plate or the web plate, depending upon welding sequence, joint details and access hole size. In this study, an integrated numerical and experimental investigation was conducted to evaluate the effects of welding parameters and joint geometry on the magnitude and distribution of residual stresses in thick-section butt joints. The results provide guidelines for improved design for welding of heavy W-shapes.
Technical Paper

Validation of a Roll Simulator for Recreational Off-Highway Vehicles

2012-04-16
2012-01-0241
A two-degree-of-freedom Roll Simulator has been developed to study the occupant kinematics of Recreational Off-Highway Vehicles (ROVs). To validate the roll simulator, test data was collected on a population of ROVs on the market today. J-turn maneuvers were performed to find the minimum energy limits required to tip up the vehicles. Two sets of tests were performed: for the first set, 10 vehicles were tested, where the motion was limited by safety outriggers to 10-15 degrees of roll; and for the second set, three of these vehicles were re-tested with outriggers removed and the vehicle motion allowed to reach 90 degrees of roll. These quarter-turn rollover tests were performed autonomously using an Automatic Steering Controller (ASC) and a Brake and Throttle Robot (BTR). Lateral and longitudinal accelerations as well as roll rate and roll angle were recorded for all tests.
X