Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Comparison of Intermediate-Combustion Products Formed in Engine with and without Ignition

1955-01-01
550262
RESULTS of tests performed on a modified type F-4 CFR engine show that precombustion reactions in both the fired and motored engine gave the same carbonyl products. The maximum specific yields of these carbonyls were similar for a given fuel compressed with comparable pressure-time-temperature histories in both motored- and fired-engine tests. As the motored engine seems to duplicate precombustion reactions occurring in a fired engine under normal operating conditions, the authors of this paper conclude that the motored engine, offering ease of control and sampling, is a convenient and valid tool for combustion research.
Technical Paper

Multiple Rear-end Collisions in Freeway Traffic, Their Causes and Their Avoidance

1970-02-01
700085
The sensitivity factor, λ, of stimulus-response car following equations was computed, based on response times, τ, obtained from aerial survey data. Vehicles of a platoon are investigated as they approach, proceed through, and leave behind a kinematic disturbance, and an inherent local and asymptotic instability is discovered. Aerial survey data is used in a numerical example to demonstrate how multiple rear-end collisions can be triggered by one vehicle. A driver aid system, informing drivers about the differential velocity between lead and following vehicles, could improve stability, although the final answer appears to lie in automated or semi-automated longitudinal control systems.
Technical Paper

Comparison of Numerical and System Dynamics Methods for Modeling Wave Propagation in the Intake Manifold of a Single-Cylinder Engine

2013-09-08
2013-24-0139
The automotive industry is striving to adopt model-based engine design and optimization procedures to reduce development time and costs. In this scenario, first-principles gas dynamic models predicting the mass, energy and momentum transport in the engine air path system with high accuracy and low computation effort are extremely important today for performance prediction, optimization and cylinder charge estimation and control. This paper presents a comparative study of two different modeling approaches to predict the one-dimensional unsteady compressible flow in the engine air path system. The first approach is based on a quasi-3D finite volume method, which relies on a geometrical reconstruction of the calculation domain using networks of zero-dimensional elements. The second approach is based on a model-order reduction procedure that projects the nonlinear hyperbolic partial differential equations describing the 1D unsteady flow in engine manifolds onto a predefined basis.
Technical Paper

Development of Brain Injury Criteria (BrIC)

2013-11-11
2013-22-0010
Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models.
Technical Paper

Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles - Driver Lane Change Performance Preliminary Results

2010-10-05
2010-01-2020
On-board Camera/Video Imaging Systems (C/VISs) for heavy vehicles display live images to the driver of selected areas to the sides, and in back of the truck's exterior using displays inside the truck cabin. They provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration, and to better judge the clearance between the trailer and an adjacent vehicle when changing lanes. The Virginia Tech Transportation Institute is currently investigating commercial motor vehicle (CMV) driver performance with C/VISs through a technology field demonstration sponsored by the National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Administration (FMCSA). Data collection, which consists of recording twelve CMV drivers performing their daily employment duties with and without a C/VIS for four months, is currently underway.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

Effect of Traffic, Road and Weather Information on PHEV Energy Management

2011-09-11
2011-24-0162
Energy management plays a key role in achieving higher fuel economy for plug-in hybrid electric vehicle (PHEV) technology; the state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining the fuel consumed. The energy management algorithm should be designed to meet all driving scenarios while achieving the best possible fuel economy. The knowledge of the power requirement during a driving trip is necessary to achieve the best fuel economy results; performance of the energy management algorithm is closely related to the amount of information available in the form of road grade, velocity profiles, trip distance, weather characteristics and other exogenous factors. Intelligent transportation systems (ITS) allow vehicles to communicate with one another and the infrastructure to collect data about surrounding, and forecast the expected events, e.g., traffic condition, turns, road grade, and weather forecast.
Journal Article

Modeling and Analysis of a Turbocharged Diesel Engine with Variable Geometry Compressor System

2011-09-11
2011-24-0123
In order to increase the efficiency of automotive turbochargers at low speed without compromising the performance at maximum boost conditions, variable geometry compressor (VGC) systems, based on either variable inlet guide vanes or variable geometry diffusers, have been recently considered as a future design option for automotive turbochargers. This work presents a modeling, analysis and optimization study for a Diesel engine equipped with a variable geometry compressor that help understand the potentials of such technology and develop control algorithms for the VGC systems,. A cycle-averaged engine system model, validated on experimental data, is used to predict the most important variables characterizing the intake and exhaust systems (i.e., mass flow rates, pressures, temperatures) and engine performance (i.e., torque, BMEP, volumetric efficiency), in steady-state and transient conditions.
Technical Paper

Response of PMHS to High- and Low-Speed Oblique and Lateral Pneumatic Ram Impacts

2011-11-07
2011-22-0011
In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al., (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al., or similar as observed by ISO.
Technical Paper

Design of Robust Active Load-Dependent Vehicular Suspension Controller via Static Output Feedback

2013-09-24
2013-01-2367
In this paper, we focus on the active vehicular suspension controller design. A quarter-vehicle suspension system is employed in the system analysis and synthesis. Due to the difficulty and cost in the measuring of all the states, we only choose two variables to construct the feedback loop, that is, the control law is a static-output-feedback (SOF) control. However, the sensor reduction would induce challenges in the controller design. One of the main challenges is the NP-hard problem in the corresponding SOF controller design. In order to deal with this challenge, we propose a two-stage design method in which a state-feedback controller is firstly designed and then the state-feedback controller is used to decouple the nonlinear conditions. To better compensate for the varying vehicle load, a robust load-dependent control strategy is adopted. The proposed design methodology is applied to a suspension control example.
Technical Paper

Model-Based Analysis and Optimization of Turbocharged Diesel Engines with a Variable Geometry Compressor and Turbine System

2012-04-16
2012-01-0716
In the last few years, the application of downsizing and turbocharging to internal combustion engines has considerably increased due to the proven potential of this technology to increase engine efficiency. Variable geometry turbines have been largely adopted to optimize the exhaust energy recovery over a large operating range. Two-stage turbocharger systems have also been studied as a solution to improve engine low-end torque and efficiency, with the first units currently available on the market. However, the compressor technology is today still based on fixed geometry machines, which are sized to efficiently operate at the maximum air flow and therefore lead to poor efficiency values at low air flow conditions. Furthermore, the surge limits prevents the full capabilities of VGT systems to increase the boosting at low engine speed.
Technical Paper

A Physically-Based, Lumped-Parameter Model of an Electrically-Heated Three-Way Catalytic Converter

2012-04-16
2012-01-1240
The impact of cold-start emissions is well known on conventional and hybrid electric vehicles. Plug-in electric vehicles offer a unique challenge in that there are opportunities for prolonged engine-off conditions which can lead to catalyst cooling and elevated emissions on engine re-start. This research investigates the development and validation of a system for controlling emissions under these conditions, with an emphasis on a catalytic converter model used for design and analysis. The model is a one-dimensional, lumped-parameter model of a three-way catalytic converter developed in Matlab/Simulink. The catalyst is divided into discrete, axial elements and each discrete element contains states for the temperatures of the gas, substrate, and can wall. Heat transfer mechanisms are modeled from physics-based equations.
Technical Paper

Dynamic Properties of the Upper Thoracic Spine-Pectoral Girdle (UTS-PG) System and Corresponding Kinematics in PMHS Sled Tests

2012-10-29
2012-22-0003
Anthropomorphic test devices (ATDs) should accurately depict head kinematics in crash tests, and thoracic spine properties have been demonstrated to affect those kinematics. To investigate the relationships between thoracic spine system dynamics and upper thoracic kinematics in crash-level scenarios, three adult post-mortem human subjects (PMHS) were tested in both Isolated Segment Manipulation (ISM) and sled configurations. In frontal sled tests, the T6-T8 vertebrae of the PMHS were coupled through a novel fixation technique to a rigid seat to directly measure thoracic spine loading. Mid-thoracic spine and belt loads along with head, spine, and pectoral girdle (PG) displacements were measured in 12 sled tests conducted with the three PMHS (3-pt lap-shoulder belted/unbelted at velocities from 3.8 - 7.0 m/s applied directly through T6-T8).
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Technical Paper

Impact Welding of Aluminum Alloy 6061 to Dual Phase 780 Steel Using Vaporizing Foil Actuator

2015-04-14
2015-01-0701
Vaporizing Foil Actuators (VFA) are based on the phenomenon of rapid vaporization of thin metallic foils and wires, caused by passage of a capacitor bank driven current on the order of 100 kA. The burst of the conductor is accompanied with a high-pressure pulse, which can be used for working metal at high strain rates. This paper focuses on the use of VFA for collision welding of dissimilar metals, in particular, aluminum and steel. Aluminum alloy 6061 sheets of 1 mm thickness were launched to velocities in excess of 650 m/s with input electrical energy of 8 kJ into 0.0762 mm thick, dog-bone shaped aluminum foil actuators. Target sheets made from dual phase steel (DP780) were impacted with the aluminum flyer sheet, and solid state impact welds were created. During mechanical testing, many samples failed outside the weld area, thereby indicating that the weld was stronger than the parent aluminum.
Technical Paper

A Rule-Based Control for Fuel-Efficient Automotive Air Conditioning Systems

2015-04-14
2015-01-0366
In a conventional passenger vehicle, the AC system is the largest ancillary load. This paper proposes a novel control strategy to reduce the energy consumption of the air conditioning system of a conventional passenger car. The problem of reducing the parasitic load of the AC system is first approached as a multi-objective optimization problem. Starting from a validated control-oriented model of an automotive AC system, an optimization problem is formalized to achieve the best possible fuel economy over a regulatory driving cycle, while guaranteeing the passenger comfort in terms of cabin temperature and reduce the wear of the components. To complete the formulation of the problem, a set of constraints on the pressure in the heat exchanger are defined to guarantee the safe operation of the system. The Dynamic Programming (DP), a numerical optimization technique, is then used to obtain the optimal solution in form of a control sequence over a prescribed driving cycle.
Technical Paper

Design, Modeling, and Validation of a Flame Reformer for LNT External By-Pass Regeneration

2006-04-03
2006-01-1367
Experimental results are presented for a technique of converting Diesel fuel to a gas stream rich in carbon monoxide and hydrogen suitable for Lean NOx Trap (LNT) regeneration. The device is relatively simple and relies upon a premixed, rich flame to generate gas with 4.5% H2 and 10% CO. The device, referred to as a flame reformer, offers a number of advantages over other methods of reductant generation for bypass regeneration LNT systems. Specifically, the device offers rapid dynamic response, potential lower cost, with a similar level of performance to other proposed methods of reductant generation.
Technical Paper

Measurement and Modeling of Tire Forces on a Low Coefficient Surface

2006-04-03
2006-01-0559
There exists a fairly extensive set of tire force measurements performed on dry pavement. But in order to develop a low-coefficient of friction tire model, a set of tire force measurements made on wet pavement is required. Using formulations and parameters obtained on dry roads, and then reducing friction level to that of a wet road is not sufficient to model tire forces in a high fidelity simulation. This paper describes the process of more accurately modeling low coefficient tire forces on the National Advanced Driving Simulator (NADS). It is believed that the tire model improvements will be useful in many types of NADS simulations, including ESC and other advanced vehicle technology studies. In order to produce results that would come from a road surface that would be sufficiently slippery, a set of tires were shaved to 4/32 inches and sent to a tire-testing lab for measurement.
Technical Paper

Rear Seat Occupant Safety: An Investigation of a Progressive Force-Limiting, Pretensioning 3-Point Belt System Using Adult PMHS in Frontal Sled Tests

2009-11-02
2009-22-0002
Rear seat adult occupant protection is receiving increased attention from the automotive safety community. Recent anthropomorphic test device (ATD) studies have suggested that it may be possible to improve kinematics and reduce injuries to rear seat occupants in frontal collisions by incorporating shoulder-belt force-limiting and pretensioning (FL+PT) technologies into rear seat 3-point belt restraints. This study seeks to further investigate the feasibility and potential kinematic benefits of a FL+PT rear seat, 3-point belt restraint system in a series of 48 kmh frontal impact sled tests (20 g, 80 ms sled acceleration pulse) performed with post mortem human surrogates (PMHS). Three PMHS were tested with a 3-point belt restraint with a progressive (two-stage) force limiting and pretensioning retractor in a sled buck representing the rear seat occupant environment of a 2004 mid-sized sedan.
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
X