Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

A Review of Lattice Boltzmann Methods for Multiphase Flows Relevant to Engine Sprays

This paper reviews some applications of lattice Boltzmann methods (LBM) to compute multiphase flows. The method is based on the solution of a kinetic equation which describes the evolution of the distribution of the population of particles whose collective behavior reproduces fluid behavior. The distribution is modified by particle streaming and collisions on a lattice. Modeling of physics at a mesoscopic level enables LBM to naturally incorporate physical properties needed to compute complex flows. In multiphase flows, the surface tension and phase segregation are incorporated by considering intermolecular attraction forces. Furthermore, the solution of the kinetic equations representing linear advection and collision, in which non-linearity is lumped locally, makes it parallelizable with relative ease. In this paper, a brief review of the lattice Boltzmann method relevant to engine sprays will be presented.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

Lattice Boltzmann Simulations of Flows in a Duct with Multiple Inlets

In this paper, computations of pulsating flows in a duct with multiple inlets using the lattice Boltzmann method (LBM) are reported. As future emissions standards present a significant challenge for Diesel engine manufacturers, several options are being investigated to identify strategies to meet such regulations. Exhaust gas aftertreatment is one of the most important among them. As the performance of the various aftertreatment devices is sensitive to the flow conditions in the exhaust, a greater understanding of the flows under pulsating conditions in the presence of multiple cylinders is needed. The Lattice Boltzmann Method (LBM) is a relatively new and promising computational approach for applications to fluid dynamics problems. Two advantages of the method relative to traditional methods are ease of implementation and ease of parallelization and performance on parallel computers.
Technical Paper

Polytopic Modeling and Lyapunov Stability Analysis of Power Electronics Systems

Power electronics based power distribution systems are inherently nonlinear often behaving as constant power loads. Stability analysis of such systems typically is limited to local behavior. Herein polytopic modeling techniques are presented. Classification of polytopic model equilibrium points is made and methods of determining uniform asymptotic stability are presented.
Technical Paper

Stability Analysis of a DC Power Electronics Based Distribution System

This paper illustrates the application of the generalized immittance space approach to the analysis of multi-bus interconnected power electronics based power distribution system. The paper sets forth the basic classifications of power converters in regard to stability analysis, a set of network reduction transformations, and illustrates the use of these reductions in order to analyze the stability of a zonal dc distribution system.
Technical Paper

A Photostress Study of Spur Gear Teeth

An experimental-analytic method of determining the stress distribution in narrow faced spur gear teeth is presented. The successful application of photostress to this contact problem is reported. It utilizes a digital computer routine developed for separating stresses in any general two-dimensional region. Results for two pairs of gears are presented. Comparison is made with values predicted by the modified Lewis formula, the Kelley and Pedersen equation, and by the Belajef solution of the Hertz contact problem for two cylinders.
Technical Paper

Comparisons of Computed and Measured Results of Combustion in a Diesel Engine

Results of computations of flows, sprays and combustion performed in an optically- accessible Diesel engine are presented. These computed results are compared with measured values of chamber pressure, liquid penetration, and soot distribution, deduced from flame luminosity photographs obtained in the engine at Sandia National Laboratories and reported in the literature. The computations were performed for two operating conditions representing low load and high load conditions as reported in the experimental work. The computed and measured peak pressures agree within 5% for both the low load and the high load conditions. The heat release rates derived from the computations are consistent with expectations for Diesel combustion with a premixed phase of heat release and then a diffusion phase. The computed soot distribution shows noticeable differences from the measured one.
Technical Paper

Structural Optimization of Thin-Walled Tubular Structures for Progressive Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field

The design optimization of thin-walled tubular structures is of relevance in the automotive industry due to their low cost, ease of manufacturing and installation, and high-energy absorption efficiency. This study presents a methodology to design thin-walled tubular structures for crashworthiness applications. During an impact, thin-walled tubular structures may exhibit progressive collapse/buckling, global collapse/buckling, or mixed collapse/buckling. From a crashworthiness standpoint, the most desirable collapse mode is progressive collapse due to its high-energy absorption efficiency, stable deformation, and low peak crush force (PCF). In the automotive industry, thin-walled components have complex structural geometries. These complexities and the several loading conditions present in a crash reduce the possibility of progressive collapse. The Hybrid Cellular Automata (HCA) method has shown to be an efficient continuum-based approach in crashworthiness design.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.