Refine Your Search



Search Results

Technical Paper

J2716 SENT - Single Edge Nibble Transmission, Updates and Status

The SAE J2716 SENT (Single Edge Nibble Transmission) Protocol has entered production with a number of announced products. The SENT protocol is a point-to-point scheme for transmitting signal values from a sensor to a controller. It is intended to allow for high resolution data transmission with a lower system cost than available serial data solution. The SAE SENT Task Force has developed a number of enhancements and clarifications to the original specification which are summarized in this paper.
Journal Article

Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)

The emissions legislation in the US and Europe introduces the need for the application of diesel particulate filters (DPF) in most diesel vehicles. In order to fulfill future OBD legislations, which include more stringent requirements on monitoring the functionality of those particulate filters, new sensors besides the differential pressure sensor are necessary. The new sensors need to directly detect the soot emission after DPF and withstand the harsh exhaust gas environment. Based on multi layer ceramic sensor technology, an exhaust gas sensor for particulate matter (EGS-PM) has been developed. The soot-particle-sensing element consists of two inter-digitated comb-like electrodes with an initially infinite electrical resistance. During the sensor operation, soot particles from the exhaust gas are collected onto the inter-digital electrodes and form conductive paths between the two electrode fingers leading to a drop of the electrical resistance.
Technical Paper

Serial WireRing - High-Speed Interchip Interface

A new high-performance interchip interface, called Serial WireRing, is introduced. It combines technically mature and established methods, whereby Serial WireRing provides a simple, robust and very inexpensive solution to replace the Serial Peripheral Interface (SPI). Serial WireRing uses a daisy chain ring topology, realized by unidirectional point-to-point connections from device to device. Serial WireRing is realized by a simple “wire ring” with CMOS, LVDS, optical or any other suitable signaling, even mixed. Therefore it has a very low pin count. In order to minimize the latency each slave transmits the data that it receives with 1 bit delay only. In order to avoid clock/data skew, the serial data and clock are merged into one bitstream. A corresponding clock is extracted at each receiver by a clock and data recovery circuit, driven by a simple internal oscillator.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Numerical and Experimental Analysis of the Mass Transfer in Exhaust Gas Sensors

Within the scope of this work, the convective mass transfer to the zirconia sensor element of an exhaust oxygen sensor was analyzed experimentally and numerically. For the experimental setup, a heightened model of an oxygen sensor was built from Lucite® considering the similarity theory. Mass transfer is measured based on the absorption of ammonia and subsequent immediate color reaction. For the numerical investigation, a three-dimensional model of the test rig was built. To predict the flow pattern and the species transport inside the protection tubes, the commercial CFD-Code FLUENT® is used. The model for the mass transfer to the surface is implemented through user-defined functions.
Technical Paper

Numerical Modeling of the Dynamic Transport of Multi-Component Exhaust Gases in Oxygen Sensors

Today's wide range oxygen sensors are based on the limiting current principle, where an applied voltage induces electrochemical reactions in a ceramic cell. Since the diffusive transport of exhaust gas to the electrodes is limited by a transport barrier, the resulting electric current can be related to the exhaust gas composition. A model is presented which describes the transient transport of gas mixtures from the bulk exhaust gas to the electrodes of an oxygen sensor at variable pressure and composition. The internal structure of the transport barrier was accounted for by geometrical parameters. A variety of numerical results are compared with experimental data.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Journal Article

Avoiding Electrical Overstress for Automotive Semiconductors by New Connecting Concepts

Bosch Automotive Semiconductor Unit investigated destroyed semiconductor devices (ASIC) from electronic control unit complaints, which failed due to electrical overstress. It turned out that failure fingerprints could only be reproduced by semiconductor operation far beyond spec limits. One main failure mechanism is caused by hot plugging and bad or late ground connection. In today’s cars some applications are still active for minutes after ignition switch off. So, currents of several amps are delivered and in a typical production or garage environment, hot plugging cannot be avoided completely. Bosch suggests introducing extended ground pins to get an enforced switch on/off sequence during plugging. This poka yoke protection principle is successfully used in other industries for a long time and should now come into cars.
Technical Paper

Numerical and Experimental Analysis of the Momentum and Heat Transfer in Exhaust Gas Sensors

Modern zirconia oxygen sensors are heated internally to achieve an optimal detection of the oxygen concentration in the exhaust gas and fast light off time. The temperature of the gas in the exhaust pipe varies in a wide range. The zirconia sensor is cooled by radiation and forced convection caused by cold exhaust gas. If the zirconia temperature falls, the oxygen detection capability of the sensor decreases. To minimize the cooling effects, protection tubes cover the zirconia sensor. However, this is in conflict with the aim to accelerate the dynamics of the lambda sensor. In this paper, the heat transfer at the surface of a heated planar zirconia sensor with two different double protection tubes of a Bosch oxygen sensor is examined in detail. The geometric configuration of the tubes forces different flow patterns in the inner protection tube around the zirconia sensor. The zirconia sensor is internally electrically heated by a platinum heater layer.
Technical Paper

PVD-Wear Resistant Coatings of Homogeneous and Graded Ti(C,N): Residual Stresses and Mechanical Performance under Hertzian Load

Ceramic protective coatings on cutting tools for steel machining are state of the art in industrial applications. Several concepts to improve the efficiency of machining processes as for instance high-speed or dry cutting yield increasing demands regarding the wear and corrosion resistance of the protective tool coatings. The generic process characteristics of PVD-coating techniques offer opportunities to tailor the coatings in terms of microstructure and residual stress states by adjusting appropriate process parameters. Besides chemical composition and microstructure the residual stresses in the coatings strongly influence their in-service performance and, are therefore important to assess and to correlate with process parameters.
Technical Paper

Giant Magneto Resistors - Sensor Technology and Automotive Applications

The paper will give an introduction to the principle of the giant magneto resistive - GMR - effect and the silicon system integration of GMR sensors. The two main applications of a GMR as a magnetic field strength sensor and as an angular field direction sensor will be discussed under consideration of automotive requirements. The typical applications of a magnetic field strength GMR sensor in incremental position and speed sensing and those of GMR angular field sensors in position sensing will be summarized. Finally advantages of GMR in those applications will be discussed and conclusions on the use of GMR in automotive sensing will be drawn.
Technical Paper

Luminance Measurement, Contrast Sensitivity, Homogeneity: New Approaches of Defining the Quality of Headlamps

The conventional measurements to describe the photometric quality of headlamps usually only comprise the luminous flux and the illuminance (resp. the luminous intensity) in several measuring points given by Type Approval Legislation. Practically, these photometric measurements do not describe the visual impression of a headlamp light distribution sufficiently, neither in lab nor in real street geometry. With the clear outer lens headlamps introduced recently, filament images are projected directly onto the screens or streets, thus giving new impulses to research. Starting from the established photometric practice, other types of measurements and physiological fundamentals will be discussed. The basic tools to make physical measurement and physiological impression comparable, e.g. in terms of homogeneity, are shown.
Technical Paper

Time Resolved Spray Characterisation in a Common Rail Direct-Injection Production Type Diesel Engine Using Combined Mie/LIF Laser Diagnostics

This study reports on laser-based diagnostics to temporally track the evolution of liquid and gaseous fuel in the cylinder of a direct injection production type Diesel engine. A two-dimensional Mie scattering technique is used to record the liquid phase and planar laser-induced fluorescence of Diesel is used to track both liquid and vaporised fuel. LIF-Signal is visible in liquid and gas phase, Mie scattering occurs only in zones where fuel droplets are present. Distinction between liquid and gaseous phase becomes therefore possible by comparing LIF- and Mie-Signals. Although the information is qualitative in nature, trends of spray evolution are accessible. Within this study a parametric variation of injection pressure, in-cylinder conditions such as gas temperature and pressure as well as piston geometry are discussed. Observations are used to identify the most sensitive parameters and to qualitatively describe the temporal evolution of the spray for real engine conditions.
Technical Paper

Safety and Security Considerations of New Closure Systems

A closure system for automotive security and driver comfort has been developed. The system combines a passive entry system and an electronic door latch system. The passive entry system utilises a single chip transponder for vehicle immobilisation, passive entry and remote control functionality. The form factor free transponder enables the integration into a key fob or a smart card. The system can be activated by either pulling the door handle or by using a push button transponder. Due to the inductive coupling between the transponder and the vehicle mounted antennas, the vehicle door or trunk opens on successful verification as if there were no locks. Additionally, inside the vehicle, the transponder can be used as a far range immobiliser. The electronic door latch system utilises electronically controlled latches.
Technical Paper

Obstacle Detection for Power Operated Window-Lift and Sunroof Actuation Systems

In order to prevent injuries due to automatic functions like express- and comfort-opening/closing of power operated window-lift and sunroof systems, mechanisms for detecting obstacles have to be established. The main related regulations are the 74/60/ECC and the FMVSS 118. In this paper we present a unified approach for smart actuators that bases on monitoring the rotational speed of the armature. The advantages have been worked out with the aid of system simulation and proven with tests under realistic and extreme scenarios. The presented results are mainly focused on a sunroof project, which is upcoming for an European car platform in 2001 and is specified to fulfill both regulations simultaneously.
Technical Paper

Software Controlled Homogeneity Analysis of Headlamp Light Distribution

This paper will describe the procedures that will enhance the possibilities of qualitative evaluation of headlamp light distributions. A basis will be the description of a light distribution coming only from reflector geometries, i.e. headlamps with clear outer lens design. Further steps of evaluation, as visualization and homogeneity analysis become more and more important for a headlamp evaluation. The recently developed tools can support both the headlamp manufacturer and the car manufacturer in finding a common understanding in headlamp performance of a projected car at a very early stage of development.
Technical Paper

Motor Vehicle Sensors Based on Film-Technology: An Interesting Alternative to Semiconductor Sensors

The manufacture of semiconductor sensors requires high investment and does not become economically viable until very high production numbers come into consideration. In the case of low production numbers, of the kind that come into consideration for production startups, and in the case of variations e.g. in the measuring range and similar, as may be the case due to the adaptation of models, it may be more viable to employ other techniques which likewise have a high rationalization potential which comes into effect already at low production numbers and which exhibits greater flexibility. The film techniques offer alternative sensor concepts for many measured quantities, whose production is reasonable in price even at smaller production numbers and possesses the necessary alteration flexibility. Besides these, are the advantages of the laser adjustment and the seamless connection of the evaluation electronics. Even possibilities laying within micro-machining technology can be used.
Technical Paper

Greater Safety Through Optimized Light Dispersion in Less Space - Obtained by the Consistent Use of Plastics in Producing Headlamps

Aerodynamic styling is playing an increasing role in the design of today's passenger cars. The profile sections of the frontends of cars imply that the available installation space for the headlamps - particularly its overall depth and height is decreased in size. New types of headlamps had to be developed. One result of extensive investigations are stepped reflectors with up to six paraboloids with different focal lengths arranged around the same focal point. This type of reflector (called homofocular reflector) cannot be formed from sheet steel but from plastic by injection molding. Depending on thermal, mechanical and geometric boundary conditions three different reflector materials can be used: lacquered thermosets, unlacquered thermoplastics by one or two material injection moldings. Similar to sheet steel the use of glass lenses reduces considerably the freedom of the designer. This disadvantage of offset by the use of plastic lenses.
Technical Paper

Impact of Bit Representation on Transport Capacity and Clock Accuracy in Serial Data Streams

All networking systems proposed for the automobile are serial in nature. Most of these systems are also multimaster. A requirement common to all of these systems is the ability to separate framing information from data. This is achieved by some form of code violation for the framing bits which violates the code form for standard data bits. In the Manchester and PWM bit representations this code violation can be signalled within a single bit, NRZ requires more bits. The concept of code violation is also used for signalling errors within a message frame. Clock tolerance is dependent on the length of time over which synchronisation between the serial bit stream and receiving circuitry must be maintained. With a given physical bus line bandwidth, the transport capacity of a protocol is a function of the number of time slots needed to transfer a given number of data bytes.
Technical Paper

Advanced Planar Oxygen Sensors for Future Emission Control Strategies

This paper presents advanced planar ZrO2 oxygen sensors being developed at Robert Bosch using a modified tetragonal partially stabilized zirconia (TZP) with high ionic conductivity, high phase stability and high thermo-mechanical strength. Green tape technology combined with highly automated thickfilm techniques allows robust and cost effective manufacturing of those novel sensing elements. Standardization of assembling parts reduces the complexity of the assembly line even in the case of different sensing principles. The sensor family meets the new requirements of modern ULEV strategies like fast light off below 10 s and linear control capability as well as high quality assurance standards. High volume production will start in 1997 for European customers.