Refine Your Search

Topic

Author

Search Results

Technical Paper

More Safety with Vehicle Stability Control

2007-11-28
2007-01-2759
Since introduction of safety belts in the 70s and airbags in the early 80s, these passive safety technologies have become standard in many markets. Remarkable improvement in passive safety, efforts to alter driver behaviour and infrastructural programmes have led to substantial reductions of fatalities in many regions, although the absolute number of highway fatalities increased e.g. in the USA in 2002 to the highest level since 1990. Electronic Stability Control (ESC) as an active safety technology assists the driver to keep the vehicle on the intended track and thereby actively prevents accidents. In 1995 Bosch was the first supplier to introduce ESC for the Mercedes-Benz S-Class, where it is marketed as ESP® - Electronic Stability Program. Since then, Bosch has produced more than 30 million systems worldwide. Many studies have now confirmed that ESC can prevent a vehicle from skidding or rolling over in nearly all driving situations.
Technical Paper

The Role of Climatic Conditions on Disc Brake Noise

2006-10-08
2006-01-3209
Since the brake colloquium in 2004 the role of climatic conditions and their relations to noise occurrence, sound pressure level and friction coefficient level is widely discussed in the US and European working groups on brake noise. A systematic study has been started to investigate the influence of relative humidity, absolute humidity and temperature on brake noise and the corresponding friction coefficient level. In this study an enormous effort was taken to keep the influences of the brake parameters, e.g. lining material, Eigenfrequencies and dimensions of the different components as small as possible to investigate the climatic influence only. Strategic humidity and temperature levels were tested according to the Mollier-Entropy-Enthalpy-Diagram which are corresponding to the seasons in the various international regions. A regression analysis evaluates the correlation and the influence of each parameter to noise and friction coefficient level.
Technical Paper

Electronic Braking System EBS - Status and Advanced Functions

1998-11-16
982781
Since 1996 a 2nd Generation EBS has been available in Europe as an advanced brake system offering a variety of advantages to the OEM as well as to the truck and fleet owner. EBS enhances vehicle safety and improves the braking performance to a “passenger car like” braking feel, allowing less experienced drivers better vehicle handling. The brake lining wear control and retarder integration allow the reduction of operational costs. The safety enhancements achieved by EBS in conjunction with disc brakes, are rewarded by European truck insurance companies by lower insurance fees. The importance of EBS will still gain significantly through the developments in process. EBS is the platform for ESP and ACC, which will be a major contributer to better integration of trucks in dense traffic flow.
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Safety and Performance Enhancement: The Bosch Electronic Stability Control (ESP)

2004-10-18
2004-21-0060
In spite of improvements in passive safety and efforts to alter driver behavior, the absolute number of highway fatalities in 2002 increased to the highest level since 1990 in the US. ESP is an active safety technology that assists the driver to keep the vehicle on the intended path and thereby helps to prevent accidents. ESP is especially effective in keeping the vehicle on the road and mitigating rollover accidents which account for over 1/3 of all fatalities in single vehicle accidents. In 1995 Bosch was the first supplier to introduce electronic stability control (ESC) for the Mercedes-Benz S-Class sedan. Since then, Bosch has produced more than 10 million systems worldwide which are marketed as ESP - Electronic Stability Program. In this report Bosch will present ESP contributions to active safety and the required adaptations to support four wheel driven vehicles and to mitigate rollover situations.
Technical Paper

Thermal Simulation within the Brake System Design Process

2002-10-06
2002-01-2587
During the acquisition phase brake system supplier have to make predictions on a system's thermal behavior based on very few reliable parameters. Increasing system knowledge requires the usage of different calculation models along with the progress of the project. Adaptive modeling is used in order to integrate test results from first prototypes or benchmark vehicles. Since changes in the brake force distribution have a great impact on the simulation results fading conditions of the linings have to be integrated as well. The principle of co-simulation is used in order to use the actual brake force distribution of the system.
Technical Paper

Benefit Estimation of Anti-Lock Braking System for Powered Two Wheeler On Indian Highways

2015-01-14
2015-26-0167
Motorized two wheelers, also known as powered two wheelers (PTW) are the most common mode of transportation in India. Around one in four deaths that occurred on the roads in India in 2012 involved a motorcyclist, according to Ministry of Road Transport and Highways. This constitutes the highest contributor for fatal accidents in India [1]. The European Transport Safety Council (ETSC) analysis shows the risk of a motorcyclist having a fatal accident is 20 times greater than for a car driver travelling the same route [2]. An investigation conducted by Bosch looked at the accident database of Road Accident Sampling System for India (RASSI). This investigation revealed interesting facts about the Indian motorcycle accident situation, such as root causes of powered two wheeler collisions and riders behaviour including their braking patterns during the pre-crash phase of the accident.
Technical Paper

Behaviour of Car Drivers in Accidents used to Estimate the Benefit of Car Antilock Brake System on Indian Highways

2015-01-14
2015-26-0172
In the year of 2012 in India the total number of accidents with injuries is registered by Ministry of Road Transport and Highway with 490,383 out of which injured people are 509,667 and fatalities are 138,258 [1]. Nearly 17% of the fatalities are occupants of passenger cars which constitute the second highest contributor for fatal accidents in India [1]. In order to understand the root causes for car accidents in India, Bosch accident research carried out a study based on in-depth accidents collected in India. Apart from other accident contributing factors e.g. infrastructure the driver behaviour and his actions few milliseconds just prior to the crash is an extremely important and a key valuable data for the understanding of accident causation. Further on it supports also the development of modern automotive safety functions. Hence this research was undertaken to evaluate the benefit of the state-of-the art vehicle safety systems known as Antilock Braking System (ABS).
Journal Article

Motorcycle Stability Control - The Next Generation of Motorcycle Safety and Riding Dynamics

2015-11-17
2015-32-0834
Anti-lock Braking Systems (ABS) for motorcycles have already contributed significantly to the safety of powered two-wheelers (PTW) on public roads by improving bike stability and controllability in emergency braking situations. In order to address further riding situations, another step forward has been achieved with Motorcycle Stability Control (MSC) system. By combining ABS, electronically combined braking system (eCBS), traction control and inertial sensors even in situations like braking and accelerating in corners the riders' safety can be improved. The MSC system controls the distribution of braking and traction forces using an algorithm that takes into account all available vehicle information from wheels, power train and vehicle attitude. With its ability to control fundamental vehicle dynamics, the MSC system will be a basis for further development and integration of comprehensive safety systems.
Journal Article

Evaluation of a State of the Art Hydraulic Brake System with Regard to Future Requirements

2016-09-18
2016-01-1927
New technologies like alternative power trains and driver assistance systems have a big impact on brake system development. Most of the development work aims at the improvement of the actuation and modulation components of the brake system. The basic hydraulic network remained nearly the same over decades and still has to meet these new requirements. Previous papers have focused mainly on studying the behavior of single components, like for example the brake hose fluid consumption in detail. Other papers studied the complete system but simplified it extremely, so that some relevant effects are neglected. In this work, one focus is to study the influence of single relevant components, like the hydraulic unit and the hoses on the overall system performance. For this measurements with a complete hydraulic brake system, including a state of the art electromechanical brake booster and single component measurements for identification, are conducted.
Technical Paper

Future Electrical Steering Systems: Realizations with Safety Requirements

2000-03-06
2000-01-0822
Additional future requirements for automobiles such as improved vehicle dynamics control, enhanced comfort, increased safety and compact packaging are met by modern electrical steering systems. Based on these requirements the new functionality is realized by various additional electrical components for measuring, signal processing and actuator control. However, the reliability of these new systems has to meet the standard of today's automotive steering products. To achieve the demands of the respective components (e.g. sensors, bus systems, electronic control units, power units, actuators) the systems have to be fault-tolerant and/or fail-silent. The realization of the derived safety structures requires both expertise and experience in design and mass production of safety relevant electrical systems. Beside system safety and system availability the redundant electrical systems also have to meet economic and market requirements.
Technical Paper

OSEKtime: A Dependable Real-Time Fault-Tolerant Operating System and Communication Layer as an Enabling Technology for By-Wire Applications

2000-03-06
2000-01-1051
The new generation of drive-by-wire systems currently under development has demanding requirements on the electronic architecture. Functions such as brake-by-wire or steer-by-wire require continued operation even in the presence of component failures. The electronic architecture must therefore provide fault-tolerance and real-time response. This in turn requires the operating system and the communication layer to be predictable, dependable and composable. It is well known that this properties are best supported by a time-triggered approach. A consortium consisting of German and French car manufacturers and suppliers, which aims at becoming a working group within the OSEK/VDX initiative, the OSEKtime consortium, is currently defining a specification for a time-triggered operating system and a fault-tolerant communication layer.1 The operating system and the communication layer are based on applicable interfaces of the OSEK/VDX standard.
Technical Paper

Intelligent Hall Effect-Based Magnetosensors in Modern Vehicle Stability Systems

2000-11-01
2000-01-C058
After comparing magnetosensor technologies for automotive use the system aspects of wheelspeed sensors for vehicle stability systems are discussed. A new generation of intelligent differential Hall Effect-based sensors is described focussing on technology, operating principle and circuitry of the Hall IC. The final realization of the wheel speed sensor is presented concluding with a summary of the main advantages of this concept.
Technical Paper

The Steer-By-Wire Prototype Implementation: Realizing Time Triggered System Design, Fail Silence Behavior and Active Replication with Fault-Tolerance Support

1999-03-01
1999-01-0400
Actual research results in the automotive field show that there is a big potential in increasing active and passive safety by implementing intelligent driver assisting systems. Realizing such safety related system functions requires an electronic system without mechanical or hydraulic backup to de-couple the human interface from the vehicle functions, e.g., steering and braking. Safety critical functions without mechanical backup enforce new requirements in system design. Any faulty behavior of a component within the system must not lead to a malfunction of the overall system. Consequently in the system design fault-tolerance mechanisms in real time must be introduced. Active replication of a functional node is a proper solution to guarantee this real time fault-tolerance. Redundancy management of the functional nodes can be implemented by fail-silent replicas, i.e. a node behaves correctly or does not produce any output at all.
Technical Paper

Tool Support for Analyzing and Optimization Methods in Early Brake System Sizing Phases

2000-03-06
2000-01-0442
The manufacturers of passenger cars increasingly assign development and production of complete subsystems to the supplying industry. A brake system supplier has to give predictions about system quality and performance long time before the first prototypical system is built or even before the supplier gets the order for system development. Nowadays, the usage of computer-aided system design and simulation is essential for that task. This article presents a tool designed to support the development process. A special focus will be on how to define quality. A formal definition of quality is provided, illustrated and motivated by two examples.
Technical Paper

Anti-Lock Braking System for Commercial Vehicles

1988-10-01
881821
Commercial vehicles must convey people and goods safely and reliable, irrespective of the weather and road conditions. The ABS safety braking systems are an essential prerequisite for fulfillment of this primary task. ABS has been used in European commercial vehicles since 1981. Today there are already fittet as standard in buses to some extend. The contribution to increasing road safety is causing the European lawmakers to make ABS statutory for commercial vehicles and to make it part of their compulsory equipment. Suitable anti-lock braking systems and closed loop configurations for commercial vehicles are demonstrated by theoretical observations and technical driving trials, their axlespecific and closed-loop control characteristics are highlighted.
Technical Paper

ASR-Traction Control, State of the Art and Some Prospects

1990-02-01
900204
Closed loop vehicle control comprising of the driver, the vehicle and the environment is now achieved by the automatic wheel slip control combination of ABS and ASR. To improve directional control during acceleration, the Robert Bosch Corporation has introduced five ASR-Systems into series production. In one system, the electronic control unit works exclusively with the engine management system to assure directional control. In two other systems, brake intervention works in concert with throttle intervention. For this task, it was necessary to develop different highly sophisticated hydraulic units. The other systems improve traction by controlling limited slip differentials. The safety concept for all five systems includes two redundant micro controllers which crosscheck and compare input and output signals. A Traction Control System can be achieved through a number of torque intervention methods.
Technical Paper

Measurement and Simulation of Transients in Longitudinal and Lateral Tire Forces

1990-02-01
900210
The design of ABS- or vehicle control systems by means of computer simulation needs adequate tire models. Recordings of the wheel speed during ABS control show oscillations caused by the rapid pressure changes in the wheel brake cylinder. Investigations in lateral tire dynamics show a phase shift between the slip angle and the lateral tire force. These transients can not be explained by simulation if the usual stationary tire input-output behaviour is supposed. Thus the investigation of the oscillations requires a different approach to the modelling of the tire. In a first step measurements with an experimental car equipped with a computer for data acquisition and control and with various sensors - e.g. a Rotating Wheel Dynamometer - were carried out. The measurement results showed a correlation between the oscillations in the wheel speed and the braking force caused by the pressure pulses as well as high frequency oscillations in the lateral tire forces.
Technical Paper

Antilock Braking Systems (ABS) for Commercial Vehicles - Status 1990 and Future Prospects

1990-10-01
901177
The paper begins with an overview of the history of ABS for commercial vehicles followed by a brief description of the technology of the BOSCH ABS at the time it went into mass production in 1981. Subsequently it describes the field experiences with ABS including the experiences of drivers and operators. These experiences are reflected in the equipment which BOSCH offers today. Additional functions such as ASR (traction control) have been integrated. The paper provides an overview of the functions available today and their implementation. The paper concludes with a discussion on potential continued developments and an attempt to describe the systems which will be required by the mid 9os.
Technical Paper

Measurement and Simulation of Transient Tire Forces

1989-02-01
890640
High performance Antilock Braking Systems (ABS) are well known to allow for very rapid pressure changes in the wheel brake cylinders. Recordings of the wheel speed during ABS control show oscillations just after the rapid pressure changes. The oscillations can not be explained by simulation if the usual stationary brake force versus slip curves are used. Thus the investigation of the oscillations requires a different approach to the modelling of the tire. As a first step in the alternative modelling of the tire the forces and moments on the running tire were measured using an experimental car. During the measurement the pressure in the wheel brake cylinder was modulated stepwise. A new Rotating Wheel Dynamometer was used to take those measurements. The results showed that the oscillations which were observed in the wheel speed could also be found in the braking force on the tire. Contrarily, the corresponding oscillations could not be found in the braking torque.
X