Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Analysis of the Influences of Wear on the Vibrations of Power Units

2020-09-30
2020-01-1506
Numerical Analysis of the Influences of Wear on the Vibrations of Power Units Yashwant Kolluru, Rolando Doelling eBike Department Robert Bosch GmbH Kusterdingen, Germany yashwant.kolluru@de.bosch.com rolando.doelling@de.bosch.com Lars Hedrich Institute of Informatics Goethe University Frankfurt Frankfurt, Germany hedrich@em.informatik.uni-frankfurt.de The prime factor, which influences vibrations of electro-mechanical drives, is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and NVH models of drive unit. Wear is a complex process and understanding it is essential for vibro-acoustics. The paper initially depicts finite element static model used for wear calculations. The special subroutines developed, aids in coupling the wear equations, various contact and friction formulations to the numerical model.
Technical Paper

Multi-Domain NVH Model for the Complete Electro-Mechanical Power Unit

2020-09-30
2020-01-1584
Multi-domain NVH Model for the Complete Electro-mechanical Power Unit Yashwant Kolluru, Rolando Doelling eBike Department Robert Bosch GmbH Kusterdingen, Germany yashwant.kolluru@de.bosch.com rolando.doelling@de.bosch.com Lars Hedrich Institute of Informatics Goethe University Frankfurt Frankfurt, Germany hedrich@em.informatik.uni-frankfurt.de Acoustics and vibrations are amongst the foremost indicators in perceiving the quality of power units. Analyzing these factors is vital to improve the performances of electro-mechanical systems. This paper deals with development of a generic simulation method enabling the multi-domain vibro-acoustic modelling for the drive trains. Excitation's for these systems majorly arise from the electric motor and mechanical gears. The paper initially depicts a flexible gear model for gear whining, which are generated for reasons like gear tooth bending.
Journal Article

Investigation of the Parameters Influencing the Spray-Wall Interaction in a GDI Engine - Prerequisite for the Prediction of Particulate Emissions by Numerical Simulation

2013-04-08
2013-01-1089
Due to the EU6 emission standard that will be mandatory starting in September 2014 the particulate emissions of GDI engines come into the focus of development. For this reason, soot and the mechanisms responsible for the soot formation are of particular importance. A very significant source of particulate emissions from engines with gasoline direct injection is the wall film formation. Therefore, the analysis of soot emission sources in the CFD calculation requires a detailed description of the entire underlying model chain, with special emphasis on the spray-wall interaction and the wall film dynamics. The validation of the mentioned spray-wall interaction and wall film models is performed using basic experimental investigations, like the infrared-thermography and fluorescence based measurements conducted at the University of Magdeburg.
Journal Article

Online Engine Speed Based Adaptation of Air Charge for Two- Wheelers

2013-10-15
2013-32-9037
Regarding the strongly growing two-wheeler market fuel economy, price and emission legislations are in focus of current development work. Fuel economy as well as emissions can be improved by introduction of engine management systems (EMS). In order to provide the benefits of an EMS for low cost motorcycles, efforts are being made at BOSCH to reduce the costs of a port fuel injection (PFI) system. The present paper describes a method of how to reduce the number of sensors of a PFI system by the use of sophisticated software functions based on high-resolution engine speed evaluation. In order to improve the performance of a system working without a MAP-sensor (manifold air pressure sensor) an air charge feature (ACFn) based on engine speed is introduced. It is shown by an experiment that ACFn allows to detect and adapt changes in manifold air pressure. Cross-influences on ACFn are analyzed by simulations and engine test bench measurements.
Technical Paper

A Novel CFD Approach for an Improved Prediction of Particulate Emissions in GDI Engines by Considering the Spray-Cooling on the Piston

2015-04-14
2015-01-0385
The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions. Nevertheless, in conventional CFD models, the spray cooling cannot be captured because of an assumed constant wall temperature.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Numerical and Experimental Analysis of the Mass Transfer in Exhaust Gas Sensors

2007-04-16
2007-01-1144
Within the scope of this work, the convective mass transfer to the zirconia sensor element of an exhaust oxygen sensor was analyzed experimentally and numerically. For the experimental setup, a heightened model of an oxygen sensor was built from Lucite® considering the similarity theory. Mass transfer is measured based on the absorption of ammonia and subsequent immediate color reaction. For the numerical investigation, a three-dimensional model of the test rig was built. To predict the flow pattern and the species transport inside the protection tubes, the commercial CFD-Code FLUENT® is used. The model for the mass transfer to the surface is implemented through user-defined functions.
Technical Paper

Numerical Modeling of the Dynamic Transport of Multi-Component Exhaust Gases in Oxygen Sensors

2007-04-16
2007-01-0931
Today's wide range oxygen sensors are based on the limiting current principle, where an applied voltage induces electrochemical reactions in a ceramic cell. Since the diffusive transport of exhaust gas to the electrodes is limited by a transport barrier, the resulting electric current can be related to the exhaust gas composition. A model is presented which describes the transient transport of gas mixtures from the bulk exhaust gas to the electrodes of an oxygen sensor at variable pressure and composition. The internal structure of the transport barrier was accounted for by geometrical parameters. A variety of numerical results are compared with experimental data.
Technical Paper

Simulation Tool Chain for the Estimation of EMC Characteristics of ECU Modules

2007-04-16
2007-01-1591
Electromagnetic Compatibility (EMC) requirements and the effort to fulfill them are increasing steadily in automotive applications. This paper demonstrates the usage of virtual prototyping to efficiently investigate the EMC behavior of a gasoline direct injection system. While the system worked functionally as designed, tests indicated that current and especially future client-specific EMC limits could not be met. The goal of this investigation was to identify and eliminate the cause of EMC emissions using a virtual software prototype including the controller ASIC, boost converter, pi filter, injection valves and wire harness. Applying virtual prototyping techniques it was possible to capture the motor control system in a simulation model which reproduced EMC measurements in the frequency ranges of interest.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Technical Paper

Numerical and Experimental Analysis of the Momentum and Heat Transfer in Exhaust Gas Sensors

2005-04-11
2005-01-0037
Modern zirconia oxygen sensors are heated internally to achieve an optimal detection of the oxygen concentration in the exhaust gas and fast light off time. The temperature of the gas in the exhaust pipe varies in a wide range. The zirconia sensor is cooled by radiation and forced convection caused by cold exhaust gas. If the zirconia temperature falls, the oxygen detection capability of the sensor decreases. To minimize the cooling effects, protection tubes cover the zirconia sensor. However, this is in conflict with the aim to accelerate the dynamics of the lambda sensor. In this paper, the heat transfer at the surface of a heated planar zirconia sensor with two different double protection tubes of a Bosch oxygen sensor is examined in detail. The geometric configuration of the tubes forces different flow patterns in the inner protection tube around the zirconia sensor. The zirconia sensor is internally electrically heated by a platinum heater layer.
Technical Paper

Expansion Devices for R-744 MAC Units

2005-05-10
2005-01-2041
In mobile R-744 A/C units mechanical expansion devices (e.g. orifice tubes) or electronic valves (e.g. PWM-valves) can be used. Besides the costs, aspects like coefficient of performance (COP), cooling capacity or control behavior - especially for extreme conditions - influence the choice of the valve type. This paper will present a comparison between an ideal electronic valve and a two stage mechanical orifice tube under full load and part load conditions. The influence of the expansion valve on COP and cooling capacity in different ambient conditions can be sufficiently described with steady-state simulations. The simulation tools used for this work are based on Modelica/Dymola. The simulation results show that for European climate conditions the use of two-stage orifices might increase fuel consumption.
Technical Paper

System Architecture and Algorithm for Advanced Passive Safety by Integration of Surround Sensing Information

2005-04-11
2005-01-1233
Surround sensing methods provide information which can be used in PRECRASH functionalities for advanced control of the passenger protection system. The relevant data (closing velocity (cv), time to impact (tti), and offset of contact point (Δy)) are determined with a Predictive Safety System and transmitted to the airbag control unit for further processing in the PRECRASH algorithm. The PRECRASH algorithm controls both, the activation of reversible restraints and the deployment of irreversible restraints. Therefore it consists of two components: The PREFIRE and the PRESET algorithm. The PREFIRE algorithm uses the PRECRASH information for the activation of the reversible belt pretensioner in advance of a crash to reduce chest load in the crash phase. The PRESET algorithm calculates the trigger decision for deployment of pyrotechnical restraints. Inputs of the PRESET algorithm are the PRECRASH information as well as the acceleration signal.
Technical Paper

VDC Systems Development and Perspective

1998-02-23
980235
Since its introduction in March 1995, the market demand for Vehicle Dynamic Control systems (VDC) has increased rapidly. Some car manufacturers have already announced their plans to introduce VDC on all their models. Particularly for compact and subcompact cars the system price needs to be reduced without sacrificing safety and performance. Originally designed for optimal performance with economically feasible components (sensors, hydraulics and microcontrollers) and using a unified control approach for all vehicle operating situations the system has been extended to include various drive concepts and has continuously been improved regarding performance, safety and cost. This paper describes the progress made in the development of the Bosch VDC system with regard to the design of the hydraulic system, the sensors, the electronic control unit, the control algorithm and safety.
Technical Paper

Vehicle Dynamics Control for Commercial Vehicles

1997-11-17
973284
This paper presents the Vehicle Dynamics Control (VDC) for commercial vehicles developed by BOSCH. The underlying physical concept is discussed in the second section after a short introduction. The third section shows the computer simulation used in the development process. Section four describes the controller structure of the VDC system. In Section five the use and effectiveness of VDC for commercial vehicles is shown in different critical driving situations. This is done by using measured data collected during testing (lane change, circular track) and it demonstrates that the safety improvements achieved for passenger cars are also possible for commercial vehicles.
Technical Paper

Simulation for the Development of the Bosch-VDC

1996-02-01
960486
A new automotive active safely system, the Vehicle Dynamics Control System (VDC) of BOSCH was introduced on the market in 1995. Besides improving the ABS/ASR functions, VDC will also actively support the driver in critical situations of lateral vehicle dynamics. This system includes new ABS/ASR-control algorithms and a superimposed control algorithm, the vehicle dynamics controller. Furthermore, an extension of the standard ABS/ASR-hydraulic system was necessary as well as the development of new automotive sensors. During all phases of the interdisciplinary system development, tests on experimental cars and extensive computer simulations were used in parallel. In order to provide adequate simulation models for different tasks, a modular concept for the simulation tool is important. Furthermore, a transparent and portable application of the control algorithm for both, experiment and simulation, is required.
Technical Paper

Thermal Simulation within the Brake System Design Process

2002-10-06
2002-01-2587
During the acquisition phase brake system supplier have to make predictions on a system's thermal behavior based on very few reliable parameters. Increasing system knowledge requires the usage of different calculation models along with the progress of the project. Adaptive modeling is used in order to integrate test results from first prototypes or benchmark vehicles. Since changes in the brake force distribution have a great impact on the simulation results fading conditions of the linings have to be integrated as well. The principle of co-simulation is used in order to use the actual brake force distribution of the system.
Technical Paper

Modeling Waves in ICE Ducts: Comparison of 1D and Low Order Models

2015-09-06
2015-24-2386
The paper presents a comparative study of various models used to estimate gas dynamics in internal combustion engine (ICE) ducts. 1D models provide a sufficient accuracy, but they are still not implementable on current ECUs. On the other hand, low order models can be real-time but their lack of accuracy and high calibration cost are still a challenging problem. This work aims at presenting a comparison of currently used gas dynamics models to predict transient phenomena in engine ducts. It emphasizes on 1D and low order models. To test under engine-like conditions, the intake path of a virtual engine implemented in GT-Power and a production two cylinder engine are used. Results show a contrast in the performance of the different models, which gives the possibility to evaluate the various approaches. Based on this assessment and depending on the application in hand, the models can be chosen properly to estimate the gas dynamics in internal combustion engine ducts.
X