Refine Your Search

Topic

Author

Search Results

Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control

2008-04-14
2008-01-0072
Recently, a new technology, termed 2-way SCR/DPF by the authors, has been developed by several catalyst suppliers for diesel exhaust emission control. Unlike a conventional emission control system consisting of an SCR catalyst followed by a catalyzed DPF, a wall-flow filter is coated with SCR catalysts for controlling both NOx and PM emissions in a single catalytic converter, thus reducing the overall system volume and cost. In this work, the potential and limitations of the Cu/Zeolite-based SCR/DPF technology for meeting future emission standards were evaluated on a pick-up truck equipped with a prototype light-duty diesel engine.
Journal Article

Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)

2010-04-12
2010-01-0307
The emissions legislation in the US and Europe introduces the need for the application of diesel particulate filters (DPF) in most diesel vehicles. In order to fulfill future OBD legislations, which include more stringent requirements on monitoring the functionality of those particulate filters, new sensors besides the differential pressure sensor are necessary. The new sensors need to directly detect the soot emission after DPF and withstand the harsh exhaust gas environment. Based on multi layer ceramic sensor technology, an exhaust gas sensor for particulate matter (EGS-PM) has been developed. The soot-particle-sensing element consists of two inter-digitated comb-like electrodes with an initially infinite electrical resistance. During the sensor operation, soot particles from the exhaust gas are collected onto the inter-digital electrodes and form conductive paths between the two electrode fingers leading to a drop of the electrical resistance.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

Development and Control of Electro-hydraulic Fully Flexible Valve Actuation System for Diesel Combustion Research

2007-10-29
2007-01-4021
Fully flexible valve actuation (FFVA) system, often referred to as camless valvetrain, employs electronically controlled actuators to drive the intake and/or exhaust valves. This technology enables the engine controller to tailor the valve event according to the engine operating condition in real-time to improve fuel economy, emissions and performance. At GM Research and Development Center, we have developed laboratory electro-hydraulic FFVA systems for single cylinder gasoline engines. The objective of this work is to develop a FFVA system for advanced diesel combustion research. There are three major differences between gasoline and diesel engines in terms of applying the FFVA systems. First, the orientation of the diesel engine valves and the location of the fuel injection system complicate the packaging issue. Second, the clearance between the valves and the piston for diesel engines are extremely small.
Technical Paper

Numerical Investigation of Recompression and Fuel Reforming in a SIDI-HCCI Engine

2007-07-23
2007-01-1878
Homogeneous Charge Compression Ignition (HCCI) is a combustion concept which has the potential for efficiency comparable to a DI Diesel engine with low NOx and soot emissions. However, HCCI is difficult to control, especially at low speeds and loads. One way to assist with combustion control and to extend operation to low speed and loads is to close the exhaust valve before TDC of the exhaust stroke, trapping and recompressing some of the hot residual. Further advantages can be attained by injecting the fuel into this trapped, recompressed mixture, where chemical reactions occur that improve ignitability of the subsequent combustion cycle. Even further improvement in the subsequent combustion cycle can be achieved by applying a spark, leading to a spark-assisted HCCI combustion concept.
Technical Paper

Development and Validation of a Mean Value Engine Model for Integrated Engine and Control System Simulation

2007-04-16
2007-01-1304
This paper describes the development of a mean value model for a turbocharged diesel engine. The objective is to develop a fast-running engine model with sufficient accuracy over a wide range of operating conditions for efficient evaluation of control algorithms and control strategies. The mean value engine model was derived from a detailed 1D engine model, using the Design of Experiments (DOE) and hybrid Radial Basis Functions (RBF) to approximate the simulation results of the detailed model for cylinder quantities (e.g., the engine volumetric efficiency, the indicated efficiency, and the energy fraction of the exhaust gas). Furthermore, the intake and exhaust systems (especially intake and exhaust manifolds) were completely simplified by lumping flow components together. In addition, to compare with hybrid RBF, neural networks were also used to approximate the simulation results of the detailed engine model.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Numerical and Experimental Analysis of the 3D Flow-Pattern in Exhaust Gas Sensors

2004-03-08
2004-01-1118
In new exhaust system specifications such as single cylinder balancing, closed coupled catalyst systems, sensor locations close to the engine, turbo applications, fast light off situations and diesel engine applications the dynamic behavior of the lambda sensor becomes more important. This demands a detailed knowledge and modeling of the relevant parameters. In former analysis of exhaust gas sensors the main focus has been the electrochemical processes in the sensor. The influence of flow structure and protection tubes had lower priority. In this paper we present the numerical and experimental analysis of cold air flowing in a pipe including mounted exhaust sensors. Two double-protection tubes from the Robert Bosch GmbH have been examined named (a) and (b). The predicted results have been compared with values measured with Laser Doppler Anemometry (LDA). The flow pattern in the protection tube type (a) depends on the geometric configuration of the sensor element and the tubes.
Technical Paper

Thermal-velocity Coupling in Vehicle Thermal System Calculations

2002-03-04
2002-01-1204
The issue of thermal-velocity coupling is discussed in the context of vehicle thermal system analysis. Temperature variations in the bulk of the fluids caused by the vehicle engine, cooling, and exhaust system lead to variations in the density of the airflow. The density variations impact the velocity field in two ways: by introducing a driving force term explicitly to account for the effect of buoyancy force and by coupling with the other governing equations. The buoyancy force is crucial for buoyancy driven flows such as vehicle under soak condition. The vehicle thermal system analysis based on the coupled approach leads to a 15°C improvement in the prediction of the underhood thermal environment.
Technical Paper

The Development and Performance of the Compact SCR-Trap System: A 4-Way Diesel Emission Control System

2003-03-03
2003-01-0778
The tightening of Heavy Duty Diesel (HDD) emissions legislation throughout the world is leading to the development of emission control devices to enable HDD engines to meet the new standards. NOx and Particulate Matter (PM) are the key pollutants which these emission control systems need to address. Diesel Particulate Filters (DPFs) are already in use in significant numbers to control PM emissions from HDD vehicles, and Selective Catalytic Reduction (SCR) is a very promising technology to control NOx emissions. This paper describes the development and performance of the Compact SCR-Trap system - a pollution control device comprising a DPF-based system (the Continuously Regenerating Trap system) upstream of an SCR system. The system has been designed to be as easy to package as possible, by minimising the total volume of the system and by incorporating the SCR catalysts on annular substrates placed around the outside of the DPF-based system.
Technical Paper

The Next Generation Northstar DOHC 4.6L V8 Engine with Four-Cam Continuously Variable Valve Timing for Cadillac

2003-03-03
2003-01-0922
A new generation Northstar DOHC V8 engine has been developed for a new family of rear-wheel-drive (RWD) Cadillac vehicles. The new longitudinal engine architecture includes strategically selected technologies to enable a higher level of performance and refinement. These technologies include four-cam continuously variable valve timing, low restriction intake and exhaust manifolds and cylinder head ports, a steel crankshaft, electronic throttle control, and close-coupled catalysts. Additional design features beyond those required for RWD include optimized block ribbing, improved coolant flow, and a newly developed lubrication and ventilation system for high-speed operation and high lateral acceleration. This new design results in improved performance over the entire operating range, lower emissions, improved fuel economy, improved operating refinement, and reduced noise/vibration/harshness (NVH).
Technical Paper

Traction Control (ASR) Using Fuel-Injection Suppression - A Cost Effective Method of Engine-Torque Control

1992-02-01
920641
Traction control (ASR) is the logical ongoing development of the antilock braking system (ABS). Due to the high costs involved though, the widespread practice of reducing the engine power by electronic throttle control (or electronic enginepower control) has up to now prevented ASR from becoming as widely proliferated as ABS. A promising method has now been developed in which fuel-injection suppression at individual cylinders is used as a low-price actuator for a budget-priced ASR. First of all, an overview of the possibilities for influencing wheel-torque by means of intervention at the engine and/or brake as a means of reducing driven wheel slip is presented. Then, the system, the control strategy, and the demands on the electronic engine-management system with sequential fuel injection are discussed. The system's possibilities and its limitations are indicated, and fears of damaging effects on the catalytic converter are eliminated.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

Exhaust Manifold Gas Temperature Predictions using System Level Data Driven Modelling

2005-04-11
2005-01-0698
A system-level, data driven model was developed to predict gas temperature in the exhaust manifolds of naturally aspirated spark ignited engines during vehicle operation. The model is based on data gathered from 67 vehicle tests. The data were collected over the last few years, from a dozen cars and trucks, spanning a range of rated power from 127 to 350 hp, engine displacements from 2 to 8 liters, Line-4, V-6 and V-8 engine configurations, vehicle mass from 1500 to nearly 9000 kg, trailer mass from zero to nearly 4000 kg, different vehicle drive schedules, different vehicle speeds, varying road grades up to a maximum in excess of 9% and ambient temperatures of 40°C. The large number of engine and vehicle design and operational variables that can influence exhaust gas temperature was limited to high-level variables known early in a vehicle development program.
Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
Technical Paper

Desktop Simulation and Calibration of Diesel Engine ECU Software using Software-in-the-Loop Methodology

2014-04-01
2014-01-0189
Current exhaust gas emission regulations can only be well adhered to through optimal interplay of combustion engine and exhaust gas after-treatment systems. Combining a modern diesel engine with several exhaust gas after-treatment components (DPF, catalytic converters) leads to extremely complex drive systems, with very complex and technically demanding control systems. Current engine ECUs (Electronic Control Unit) have hundreds of functions with thousands of parameters that can be adapted to keep the exhaust gas emissions within the given limits. Each of these functions has to be calibrated and tested in accordance with the rest of the ECU software. To date this task has been performed mostly on engine test benches or in Hardware-in-the-Loop (HiL) setups. In this paper, a Software-in-the-Loop (SiL) approach, consisting of an engine model and an exhaust gas treatment (EGT) model, coupled with software from a real diesel engine ECU, will be described in detail.
Technical Paper

Secondary Air Injection with a New Developed Electrical Blower for Reduced Exhaust Emissions

1994-03-01
940472
Secondary air injection after cold start gives two effects for reduced exhaust emissions: An exothermic reaction at the hot exhaust valves occurs, which increases the temperature of the exhaust gas. It gives sufficient air to the catalyst during the cold start fuel enrichment that is necessary to prevent driveability problems. Handicaps for the wide use of air injection include space constraints, weight and price. An electrical air blower was choosen to best satisfy all these requirements. The development steps are described. The result is a three stage radialblower with extremly high revolutions of about 18000 rpm. The system configuration and the outcome are demonstrated on the new C-Class of Mercedes-Benz. The results show emission reductions higher than 50 %, while also satisfying the development goals of noise, volume, weight and cost requirements.
Technical Paper

High Temperature Oxidation/Corrosion Performance of Various Materials for Exhaust System Applications

2006-04-03
2006-01-0605
Durability requirements for exhaust materials have resulted in the increased use of stainless steels throughout the exhaust system. The conversion of carbon steel exhaust flanges to stainless steel has occurred on many vehicles. Ferritic stainless steels are commonly used for exhaust flanges. Flange construction methods include stamped sheet steel, thick plate flanges and powder metal designs. Flange material selection criteria may include strength, oxidation resistance, weldability and cold temperature impact resistance. Flange geometry considerations include desired stiffness criteria, flange rotation, gasket/sealing technique and vehicle packaging. Both the material selection and flange geometry are considered in terms of meeting the desired durability and cost. The cyclic oxidation performance of the material is a key consideration when selecting flange materials.
X