Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

The Influence of Crevices on Hydrocarbon Emissions from a Diesel-Methane Dual Fuel Engine

2013-04-08
2013-01-0848
Emissions of unburned methane are the Achilles heel of premixed gas engines whether they are spark ignited or diesel pilot ignited. If the engine is operated lean, lower temperatures prevail in the combustion chamber and several of the mechanisms behind the hydrocarbon emissions are aggravated. This paper presents an experimental investigation of the contribution from combustion chamber crevices and quenching to the total hydrocarbon emissions from a diesel-methane dual fuel engine at different operating conditions and air excess ratios. It is shown that the sensitivity to a change in topland crevice volume is greater at lean conditions than at stoichiometry. More than 70% of hydrocarbon emissions at air excess ratios relevant to operation of lean burn engines can be attributed to crevices.
Technical Paper

Prediction of Engine Noise using Parameterized Combustion Pressure Curves

2007-05-15
2007-01-2373
A parameterization for combustion chamber cylinder pressures is tuned to measurements on an inline 6 cylinder Diesel engine at different operating conditions. Both measured and modeled signals are filtered in the frequency domain and according to the so called Lucas attenuation. Two different estimates of engine radiated noise are obtained and compared in this fashion. The influence of physically meaningful parameters on the frequency contents of the final noise level is analyzed, as well as the contribution of the pressure trace of the motored engine. The scattering of data in the pressure signal is calculated as a function of the crank angle allowing for statistical considerations.
Technical Paper

A Comparative Study Between 1D and 3D Computational Results for Turbulent Flow in an Exhaust Manifold and in Bent Pipes

2009-04-20
2009-01-1112
To improve today’s 1D engine simulation techniques it is important to investigate how well complex geometries such as the manifold are modeled by these engine simulation tools and to identify the inaccuracies that can be attributed to the 1D assumption. Time resolved 1D and 3D calculations have been performed on the turbulent flow through the outer runners of an exhaust manifold of a 2 liter turbocharged SI engine passenger car The total pressure drop over the exhaust manifold, computed with the 1D and 3D approach, showed to differ over an exhaust pulse. This is so even though a pressure loss coefficient correction has been employed in the 1D model to account for 3D flow effects. The 3D flow in the two outer runners of the manifold shows the presence of secondary flow motion downstream of the first major curvature. The axial velocity profile downstream of the first turn loses its symmetry. As the flow enters the second curvature a swirling motion is formed.
Technical Paper

A Study of In-Cylinder Fuel Spray Formation and its Influence on Exhaust Emissions Using an Optical Diesel Engine

2010-05-05
2010-01-1498
Increasingly stringent emission legislation as well as increased demand on fuel efficiency calls for further research and development in the diesel engine field. Spray formation, evaporation and ignition delay are important factors that influence the combustion and emission formation processes in a diesel engine. Increased understanding of the mixture formation process is valuable in the development of low emission, high efficiency diesel engines. In this paper spray formation and ignition under real engine conditions have been studied in an optical engine capable of running close to full load for a real HD diesel engine. Powerful external lights were used to provide the required light intensity for high speed camera images in the combustion chamber prior to ignition. A specially developed software was used for spray edge detection and tracking. The software provides crank angle resolved spray penetration data.
Technical Paper

Stall Development in a Ported Shroud Compressor using PIV Measurements and Large Eddy Simulation

2010-04-12
2010-01-0184
Surge is a phenomenon that limits the operational range of the compressor at low mass flow rates. The objective of this research is to study effective operational range for a ported shroud compressor. The size of the compressor is typical for a turbocharger used on diesel engines. To be able to extend the operational range, the surge characteristics have to be assessed. This is done by performing measurement of the flow at the inlet to the compressor wheel and pressure fluctuations at the inlet and outlet of the compressor housing. Detailed numerical computations of the flow in the entire compressor section under similar operating conditions have also been carried out. The experimental work includes Particle Imaging Velocimetry (PIV) measurements of the instantaneous and mean velocity field at the inlet. At surge, low frequency pulsations are detected that seem to result from back flow already observed in stall.
Technical Paper

Improving Turbocharged Engine Simulation by Including Heat Transfer in the Turbocharger

2012-04-16
2012-01-0703
Engine simulation based on one-dimensional gas dynamics is well suited for integration of all aspects arising in engine and powertrain developments. Commonly used turbocharger performance maps in engine simulation are measured in non-pulsating flow and without taking into account the heat transfer. Since on-engine turbochargers are exposed to pulsating flow and varying heat transfer situations, the maps in the engine simulation, i.e. GT-POWER, have to be shifted and corrected which are usually done by mass and efficiency multipliers for both turbine and compressor. The multipliers change the maps and are often different for every load point. Particularly, the efficiency multiplier is different for every heat transfer situation on the turbocharger. The aim of this paper is to include the heat transfer of the turbocharger in the engine simulation and consequently to reduce the use of efficiency multiplier for both the turbine and compressor.
Technical Paper

Optical Study of Swirl during Combustion in a CI Engine with Different Injection Pressures and Swirl Ratios Compared with Calculations

2012-04-16
2012-01-0682
Spray and mixture formation in a compression-ignition engine is of paramount importance in the diesel combustion process. In an engine transient, when the load increases rapidly, the combustion system needs to handle low λ operation without producing high NOx emissions and large amounts of particulate matter. By changing the in-cylinder flow, the emissions and engine efficiency are affected. Optical engine studies were therefore performed on a heavy-duty engine geometry at different fuel injection pressures and inlet airflow characteristics. By applying different inlet port designs and valve seat masking, swirl and tumble were varied. In the engine tests, swirl number was varied from 2.3 to 6.3 and the injection pressure from 500 to 2500 bar. To measure the in-cylinder flow around TDC, particle image velocimetry software was used to evaluate combustion pictures. The pictures were taken in an optical engine using a digital high-speed camera.
Technical Paper

Demonstration of Air-Fuel Ratio Role in One-Stage Turbocompound Diesel Engines

2013-10-14
2013-01-2703
A large portion of fuel energy is wasted through the exhaust of internal combustion engines. Turbocompound can, however, recover part of this wasted heat. The energy recovery depends on the turbine efficiency and mass flow as well as the exhaust gas state and properties such as pressure, temperature and specific heat capacity. The main parameter influencing the turbocompound energy recovery is the exhaust gas pressure which leads to higher pumping loss of the engine and consequently lower engine crankshaft power. Each air-fuel equivalence ratio (λ) gives different engine power, exhaust gas temperature and pressure. Decreasing λ toward 1 in a Diesel engine results in higher exhaust gas temperatures of the engine. λ can be varied by changing the intake air pressure or the amount of injected fuel which changes the available energy into the turbine. Thus, there is a compromise between gross engine power, created pumping power, recovered turbocompound power and consumed compressor power.
Technical Paper

Temperature Estimation of Turbocharger Working Fluids and Walls under Different Engine Loads and Heat Transfer Conditions

2013-09-08
2013-24-0123
Turbocharger performance maps, which are used in engine simulations, are usually measured on a gas-stand where the temperatures distributions on the turbocharger walls are entirely different from that under real engine operation. This should be taken into account in the simulation of a turbocharged engine. Dissimilar wall temperatures of turbochargers give different air temperature after the compressor and different exhaust gas temperature after the turbine at a same load point. The efficiencies are consequently affected. This can lead to deviations between the simulated and measured outlet temperatures of the turbocharger turbine and compressor. This deviation is larger during a transient load step because the temperatures of turbocharger walls change slowly due to the thermal inertia. Therefore, it is important to predict the temperatures of turbocharger walls and the outlet temperatures of the turbocharger working fluids in a turbocharged engine simulation.
Technical Paper

In-Cylinder Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Calculations during Combustion and Post-Oxidation in a HD Diesel Engine

2013-09-08
2013-24-0064
In-cylinder flow pattern was evaluated during diesel combustion and post-oxidation in a heavy duty optical engine and compared with CFD calculations. In this work the recently developed optical method combustion image velocimetry (CIV) is evaluated. It was used for extracting the flow pattern during combustion and post-oxidation by tracing the glowing soot clouds in the cylinder. The results were compared with CFD sector simulation on the same heavy duty engine geometry. Load was 10 bar IMEP and injection pressure was varied in two steps together with two different swirl levels. The same variations were done in both the optical engine and in the CFD simulations. The main results in this work show that the CIV method and the CFD results catch the same flow pattern trends during combustion and post-oxidation. Evaluation of the CIV technique has been done on large scale swirl vortices and compared with the CFD results at different distances from the piston bowl surface.
Technical Paper

Swirl and Injection Pressure Impact on After-Oxidation in Diesel Combustion, Examined with Simultaneous Combustion Image Velocimetry and Two Colour Optical Method

2013-04-08
2013-01-0913
After-oxidation in Heavy Duty (HD) diesel combustion is of paramount importance for emissions out from the engine. During diffusion diesel combustion, lots of particulate matter (PM) is created. Most of the PM are combusted during the after-oxidation part of the combustion. Still some of the PM is not, especially during an engine transient at low lambda. To enhance the PM oxidation in the late engine cycle, swirl together with high injection pressure can be implemented to increase in-cylinder turbulence at different stages in the cycle. Historically swirl is known to reduce soot particulates. It has also been shown, that with today's high injection pressures, can be combined with swirl to reduce PM at an, for example, engine transient. The mechanism why the PM engine out is reduced also at high injection pressures is however not so well understood.
Technical Paper

Swirl and Injection Pressure Effect on Post-Oxidation Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Simulation

2013-10-14
2013-01-2577
In-cylinder flow pattern has been examined experimentally in a heavy duty optical diesel engine and simulated with CFD code during the combustion and the post-oxidation phase. Mean swirling velocity field and its evolution were extracted from optical tests with combustion image velocimetry (CIV). It is known that the post-oxidation period has great impact on the soot emissions. Lately it has been shown in swirling combustion systems with high injection pressures, that the remaining swirling vortex in the post-oxidation phase deviates strongly from solid body rotation. Solid body rotation can only be assumed to be the case before fuel injection. In the studied cases the tangential velocity is higher in the centre of the piston bowl compared to the outer region of the bowl. The used CIV method is closely related to the PIV technique, but makes it possible to extract flow pattern during combustion at full load in an optical diesel engine.
Technical Paper

Measurement of the Oil Film Thickness Between the Cylinder Liner and the Piston Rings in a Heavy Duty Directly Injected Diesel Engine

1995-10-01
952469
An electrical capacitance measuring method has been used to obtain the cylinder liner oil film thicknesses for various speeds and loads in a heavy duty directly injected diesel engine. Interesting facts have been observed: Increased oil film thickness for the top ring distance to wall during idling. A gas pocket appearing between top ring and liner at increasing speeds and loads movement of the piston in the liner when combustion sets in, the motion is not parallel. temperature seems to have little effect on the oil film thickness. A computer model of the top ring showed good conformance with the measurements over the speed and load range, but the calculated oil film thickness is about 3 to 6 times higher.
Technical Paper

Divided Exhaust Period - A Gas Exchange System for Turbocharged SI Engines

2005-04-11
2005-01-1150
The necessity to limit the boost pressure in turbocharged gasoline engines results in higher exhaust pressure than inlet pressure at engine speeds when the wastegate is opened. This imbalance has a negative influence on the exhaust scavenging of the engine and results in high levels of residual gas and consequently the engine is more prone to knock. This paper presents a study of a gas-exchange system for turbocharged SI engines. The concept aims at improving the performance and emissions of a turbocharged SI engine by dividing the exhaust flow from the two exhaust valves into two different exhaust manifolds, one connected to the turbocharger and one connected to a close coupled catalyst. By separating the valve opening period of the two valves and keeping the duration of both valve opening events shorter than 180 crank angle degrees, the disturbance of the exhaust blowdown pressure pulse during valve overlap in a four cylinder engine can be completely eliminated.
Technical Paper

The Influence of Residual Gases on Knock in Turbocharged SI-Engines

2000-10-16
2000-01-2840
In this investigation the influence on knock from the residual gas in the cylinder is investigated. Gas was sampled from inside the cylinder prior to ignition, the Residual Gas Fraction, RGF, was determined and the Knock Intensity, KI, was measured. By altering the exhaust backpressure the RGF was changed. By measuring the knock intensity for different RGF the influence on knock from residual gas was investigated. It is shown that with increased residual gas fraction the knock propensity of the engine is increased, and subsequently, decreased RGF gives lower knock intensity. This is showed by the fact that, with maintained knock intensity at 30 kPa, the ignition timing can be advanced as much as 5 Crank Angle Degrees, CAD, if the RGF is reduced with 15%.
X