Refine Your Search

Topic

Author

Search Results

Technical Paper

Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation

2001-03-05
2001-01-1203
Piston-wetting effects are investigated in an optical direct-injection spark-ignition (DISI) engine. Fuel spray impingement on the piston leads to the formation of fuel films, which are visualized with a laser-induced fluorescence (LIF) imaging technique. Oxygen quenching is found to reduce the fluorescence yield from liquid gasoline. Fuel films that exist during combustion of the premixed charge ignite to create piston-top pool fires. These fires are characterized using direct flame imaging. Soot produced by the pool fires is imaged using laser elastic scattering and is found to persist throughout the exhaust stroke, implying that piston-top pool fires are a likely source of engine-out particulate emissions for DISI engines.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

Chemiluminescence Imaging of Autoignition in a DI Diesel Engine

1998-10-19
982685
Chemiluminescence imaging has been applied to a parametric investigation of diesel autoignition. Time-resolved images of the natural light emission were made in an optically accessible DI diesel engine of the heavy-duty size class using an intensified CCD video camera. Measurements were obtained at a base operating condition, corresponding to a motored TDC temperature and density of 992 K and 16.6 kg/m3, and for TDC temperatures and densities above and below these values. Data were taken with a 42.5 cetane number blend of the diesel reference fuels for all conditions, and measurements were also made with no. 2 diesel fuel (D2) at the base condition. For each condition, temporal sequences of images were acquired from the time of first detectable chemiluminescence up through fully sooting combustion, and the images were analyzed to obtain quantitative measurements of the average emission intensity.
Technical Paper

Evaluation and Optimization of Measurements of Flame Kernel Growth and Motion Using a Fiber-Optic Spark Plug Probe

1998-05-04
981427
Spark plugs instrumented with a ring of optical fibers in the threaded-body region have seen considerable use in the past ten years, and it is expected that their application to unmodified production engines will increase in the years to come. Interpretation of the optical signals obtained with the probe is often difficult, particularly under lean operating conditions where the low luminosity of the flame leads to imprecise flame arrival detection. A systematic look at the optical signals, along with direct imaging of the flame, has been undertaken to calibrate and optimize the determination of flame arrival times. In addition, an evaluation of the different models available for the analysis of the flame arrival data is made. Data fits are compared with real flame images, to determine which model best estimates the convective velocity of the flow and the expansion speed of the flame kernel.
Technical Paper

PLIF Imaging of NO Formation in a DI Diesel Engine1

1998-02-01
980147
NO formation during direct-injection (DI) diesel combustion has been investigated using planar laser-induced fluorescence (PLIF) imaging. Measurements were made at a typical medium-speed operating condition in a heavy-duty size-class engine modified for optical access. By combining a unique laser system with a particular spectroscopic scheme, single-shot NO images were obtained at realistic operating conditions with negligible O2 interference. Temporal sequences of NO PLIF images are presented along with corresponding images of combined elastic scattering and natural luminosity. These images show the location and timing of the NO formation relative to the other components of the reacting fuel jet. In addition, total NO formation was examined by integrating the NO PLIF signal over a large fraction of the combustion-chamber volume.
Technical Paper

The Influence of Fuel Volatility on the Liquid-Phase Fuel Penetration in a Heavy-Duty D.I. Diesel Engine

1998-02-23
980510
The objective of this investigation is to verify and characterize the influence of fuel volatility on maximum liquid-phase fuel penetration for a variety of actual Diesel fuels under realistic Diesel engine operating conditions. To do so, liquid-phase fuel penetration was measured for a total of eight Diesel fuels using laser elastic-scatter imaging. The experiments were carried out in an optically accessible Diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. In addition to liquid-phase fuel penetration, ignition delay was assessed for each fuel based on pressure-derived apparent heat release rate and needle lift data. For all fuels examined, it was observed that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum characteristic length. Beyond this characteristic length, the fuel is entirely vapor phase and not just smaller fuel droplets.
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Technical Paper

Type X and Y Errors and Data & Model Conditioning for Systematic Uncertainty in Model Calibration, Validation, and Extrapolation1

2008-04-14
2008-01-1368
This paper introduces and develops the concept of “Type X” and “Type Y” errors in model validation and calibration, and their implications on extrapolative prediction. Type X error is non-detection of model bias because it is effectively hidden by the uncertainty in the experiments. Possible deleterious effects of Type X error can be avoided by mapping uncertainty into the model until it envelopes the potential model bias, but this likely assigns a larger uncertainty than is needed to account for the actual bias (Type Y error). A philosophy of Best Estimate + Uncertainty modeling and prediction is probably best supported by taking the conservative choice of guarding against Type X error while accepting the downside of incurring Type Y error. An associated methodology involving data- and model- conditioning is presented and tested on a simple but rich test problem.
Technical Paper

Numerical and Optical Evolution of Gaseous Jets in Direct Injection Hydrogen Engines

2011-04-12
2011-01-0675
This paper performs a parametric analysis of the influence of numerical grid resolution and turbulence model on jet penetration and mixture formation in a DI-H2 ICE. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located single-hole injector nozzle. The simulation includes the intake and exhaust port geometry, in order to account for the actual flow field within the cylinder when injection of hydrogen starts. A reduced geometry is then used to focus on the mixture formation process. The numerically predicted hydrogen mole-fraction fields are compared to experimental data from quantitative laser-based imaging in a corresponding optically accessible engine. In general, the results show that with proper mesh and turbulence settings, remarkable agreement between numerical and experimental data in terms of fuel jet evolution and mixture formation can be achieved.
Technical Paper

Measurement of Liquid and Vapor Penetration of Diesel Sprays with a Variation in Spreading Angle

2015-04-14
2015-01-0946
The mixing field of sprays injected into high temperature and pressure environments has been observed to be tightly connected to spreading angle, therefore linking vaporization and combustion processes to the angular dispersion of the spray. Visualization of the Engine Combustion Network three-hole, Spray B diesel injector shows substantial variation in near-field spreading angle with respect to time compared to past measurements of the single-hole, Spray A injector. The source of these variations originating inside the nozzle, and the implications on mixing, evaporation, and combustion of the diesel plume, need to be understood. In this study, we characterize the ECN-target plume for a Spray B injector (Serial # 211201), which already benefits from extensive and detailed internal measurements of nozzle geometry and needle movement, while comparing to the single-hole Spray A with the same type of detailed geometry and understanding.
Technical Paper

Experimental Characterization of DI Gasoline Injection Processes

2015-09-01
2015-01-1894
This work investigates the injection processes of an eight-hole direct-injection gasoline injector from the Engine Combustion Network (ECN) effort on gasoline sprays (Spray G). Experiments are performed at identical operating conditions by multiple institutions using standardized procedures to provide high-quality target datasets for CFD spray modeling improvement. The initial conditions set by the ECN gasoline spray community (Spray G: Ambient temperature: 573 K, ambient density: 3.5 kg/m3 (∼6 bar), fuel: iso-octane, and injection pressure: 200 bar) are examined along with additional conditions to extend the dataset covering a broader operating range. Two institutes evaluated the liquid and vapor penetration characteristics of a particular 8-hole, 80° full-angle, Spray G injector (injector #28) using Mie scattering (liquid) and schlieren (vapor).
Technical Paper

Mechanisms of Post-Injection Soot-Reduction Revealed by Visible and Diffused Back-Illumination Soot Extinction Imaging

2018-04-03
2018-01-0232
Small closely-coupled post injections of fuel in diesel engines are known to reduce engine-out soot emissions, but the relative roles of various underlying in-cylinder mechanisms have not been established. Furthermore, the efficacy of soot reduction is not universal, and depends in unclear ways on operating conditions and injection schedule, among other factors. Consequently, designing engine hardware and operating strategies to fully realize the potential of post-injections is limited by this lack of understanding. Following previous work, several different post-injection schedules are investigated using a single-cylinder 2.34 L heavy-duty optical engine equipped with a Delphi DFI 1.5 light-duty injector. In this configuration, adding a closely-coupled post injection with sufficiently short injection duration can increase the load without increasing soot emissions.
Technical Paper

Predicting NOX Emissions from HCCI Engines Using LIF Imaging

2006-04-03
2006-01-0025
Our previous work applied LIF measurements of in-cylinder fuel distribution to predict CO2, CO, and HC emissions from an HCCI engine under low-load stratified-charge conditions. The prediction method is based on the premise that local fuel-air packets at a given equivalence ratio (characterized using LIF imaging) burn as if in a homogeneous charge at the same equivalence ratio. Thus, emissions measured during homogeneous operation provide an emission-versus- equivalence-ratio look-up table for predicting stratified-charge emissions. The present paper extends the technique to predict engine-out NOX emissions. Because of operating-range limitations, NOX look-up data for homogeneous operation cannot adequately be determined by experiment. Instead, a CHEMKIN-based model provides this look-up table data instead.
Technical Paper

Measurement of Instantaneous Flamelet Surface Normals and the Burning Rate in a SI Engine

1999-10-25
1999-01-3543
A recently developed technique, crossed-plane imaging, is extended to measure instantaneous flamelet surface normals in a single-cylinder, optical SI engine. Two simultaneous, orthogonal acetone PLIF images are used to measure the instantaneous flamelet orientation in three dimensions. The images are also used to measure contours of constant mean reaction progress variable < c> and the mean flamelet crossing density. Statistics of the flamelet surface normal are presented in spherical coordinates in terms of a polar angle, f, and an azimuthal angle,q; the pole is aligned with the normal to a constant surface. The data are used to estimate marginal probability density functions (PDF's) in f and q. The estimated marginal PDF's are found to be well represented by the same functional forms applied previously to turbulent V-flames. The flamelet surface density and the mean fractional increase in flamelet surface area due to turbulence are also estimated.
Technical Paper

The Effects of Injection Timing and Diluent Addition on Late-Combustion Soot Burnout in a DI Diesel Engine Based on Simultaneous 2-D Imaging of OH and Soot

2000-03-06
2000-01-0238
The effects of injection timing and diluent addition on the late-combustion soot burnout in a direct-injection (DI) diesel engine have been investigated using simultaneous planar imaging of the OH-radical and soot distributions. Measurements were made in an optically accessible DI diesel engine of the heavy-duty size class at a 1680 rpm, high-load operating condition. A dual-laser, dual-camera system was used to obtain the simultaneous “single-shot” images using planar laser-induced fluorescence (PLIF) and planar laser-induced incandescence (PLII) for the OH and soot, respectively. The two laser beams were combined into overlapping laser sheets before being directed into the combustion chamber, and the optical signal was separated into the two cameras by means of an edge filter.
Technical Paper

Predicting Emissions from HCCI Engines using LIF Imaging

2005-10-24
2005-01-3747
This paper proposes a method for quantitatively predicting emissions from a homogeneous-charge compression-ignition (HCCI) engine using laser-induced fluorescence (LIF) imaging of the in-cylinder fuel distribution. The prediction scheme, which is applied to stratified operation, is based on the premise that local fuel-air packets at a given equivalence ratio burn as if in an isolated homogeneous mixture at the same equivalence ratio. Insofar as the premise holds true, the emissions produced by each packet can be predicted using a look-up table of exhaust emission values measured during homogeneous operation. LIF images of fuel distribution during stratified operation are reduced to probability density functions (PDF) that, together with the look-up tables, allow prediction of engine-out emissions. Despite the simplifications associated with the prediction scheme, predicted values of CO2, CO and HC emissions each agree to within 15% of total fuel carbon for low-load operation.
Technical Paper

Acquisition of Corresponding Fuel Distribution and Emissions Measurements in HCCI Engines

2005-10-24
2005-01-3748
Optical engines are often skip-fired to maintain optical components at acceptable temperatures and to reduce window fouling. Although many different skip-fired sequences are possible, if exhaust emissions data are required, the skip-firing sequence ought to consist of a single fired cycle followed by a series of motored cycles (referred to here as singleton skip-firing). This paper compares a singleton skip-firing sequence with continuous firing at the same inlet conditions, and shows that combustion performance trends with equivalence ratio are similar. However, as expected, reactant temperatures are lower with skip-firing, resulting in retarded combustion phasing, and lower pressures and combustion efficiency. LIF practitioners often employ a homogeneous charge of known composition to create calibration images for converting raw signal to equivalence ratio.
Technical Paper

Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets

2005-10-24
2005-01-3843
The reaction zone of a diesel fuel jet stabilizes at a location downstream of the fuel injector once the initial autoignition phase is over. This distance is referred to as flame lift-off length. Recent investigations have examined the effects of a wide range of parameters (injection pressure, orifice diameter, and ambient gas temperature, density and oxygen concentration) on lift-off length under quiescent diesel conditions. Many of the experimental trends in lift-off length were in agreement with scaling laws developed for turbulent, premixed flame propagation in gas-jet lifted flames at atmospheric conditions. However, several effects did not correlate with the gas-jet scaling laws, suggesting that other mechanisms could be important to lift-off stabilization at diesel conditions. This paper shows experimental evidence that ignition processes affect diesel lift-off stabilization.
Technical Paper

Dynamics of Multiple-Injection Fuel Sprays in a Small-bore HSDI Diesel Engine

2000-03-06
2000-01-1256
An experimental study was conducted to characterize the dynamics and spray behavior of a wide range of minisac and Valve-Covered-Orifice (VCO) nozzles using a high-pressure diesel common-rail system. The measurements show that the resultant injection-rate is strongly dependent on common-rail pressure, nozzle hole diameter, and nozzle type. For split injection the dwell between injections strongly affects the second injection in regards to the needle lift profile and the injected fuel amount. The minisac nozzle can be used to achieve shorter pilot injections at lower common-rail pressures than the VCO nozzle. Penetration photographs of spray development in a high pressure, optical spray chamber were obtained and analyzed for each test condition. Spray symmetry and spray structure were found to depend significantly on the nozzle type.
Technical Paper

Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2006-04-03
2006-01-0079
In-cylinder spray, mixing, combustion, and pollutant-formation processes for low-load (4 bar IMEP), low-temperature combustion conditions (12.7% charge oxygen, ∼2170 K stoichiometric adiabatic flame temperature) with early fuel injection (SOI=-22° ATDC) at two different charge densities (naturally aspirated, 1.34 bar abs. boost) were studied in an optical heavy-duty diesel engine using simultaneous pairings of multiple laser/imaging diagnostics. Laser-elastic/Mie scattering showed liquid-fuel penetration, fuel fluorescence indicated the leading edge of the vapor jet, chemiluminescence imaging showed the location of ignition, OH fluorescence probed the hot second-stage combustion, and soot luminosity and soot laser-induced incandescence measured development of in-cylinder soot.
X