Refine Your Search

Search Results

Viewing 1 to 19 of 19
Journal Article

PLIF Measurements of Thermal Stratification in an HCCI Engine under Fired Operation

Tracer-based PLIF temperature diagnostics have been used to study the distribution and evolution of naturally occurring thermal stratification (TS) in an HCCI engine under fired and motored operation. PLIF measurements, performed with two excitation wavelengths (277, 308 nm) and 3-pentanone as a tracer, allowed investigation of TS development under relevant fired conditions. Two-line PLIF measurements of temperature and composition were first performed to track the mixing of the fresh charge and hot residuals during intake and early compression strokes. Results showed that mixing occurs rapidly with no measureable mixture stratification remaining by early compression (220°CA aTDC), confirming that the residual mixing is not a leading cause of thermal stratification for low-residual (4-6%) engines with conventional valve timing.
Journal Article

A Comparison of Methods for Representing and Aggregating Uncertainties Involving Sparsely Sampled Random Variables - More Results

This paper discusses the treatment of uncertainties corresponding to relatively few samples of random-variable quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse samples it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem an interesting and difficult one.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Journal Article

Influence of the In-Cylinder Flow Field (Tumble) on the Fuel Distribution in a DI Hydrogen Engine Using a Single-Hole Injector

This paper examines the interaction of bulk flow and jet-induced fuel convection in an optically accessible hydrogen-fueled engine with direct injection. Planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel tracer was performed to obtain quantitative images of the hydrogen mole-fraction in the operating engine. With the engine motored, fuel was injected into inert bulk gas from a centrally located injector during the compression stroke. The injector had a single-hole nozzle with the jet angled at 50 degrees with respect to the vertical injector axis. Two parameters were varied in the experiments, injector orientation and tumble intensity, and for each of these, the injection timing was varied. Image series of the mean fuel mole-fraction between injection and near-TDC crank angles capture the mixture-formation process for each configuration and injection timing.
Journal Article

Equivalence Ratio Distributions in a Light-Duty Diesel Engine Operating under Partially Premixed Conditions

The performance of Partially Premixed Compression Ignition (PPCI) combustion relies heavily on the proper mixing between the injected fuel and the in-cylinder gas mixture. In fact, the mixture distribution has direct control over the engine-out emissions as well as the rate of heat release during combustion. The current study focuses on investigating the pre-combustion equivalence ratio distribution in a light-duty diesel engine operating at a low-load (3 bar IMEP), highly dilute (10% O₂), slightly boosted (P ⁿ = 1.5 bar) PPCI condition. A tracer-based planar laser-induced fluorescence (PLIF) technique was used to acquire two-dimensional equivalence ratio measurements in an optically accessible diesel engine that has a production-like combustion chamber geometry including a re-entrant piston bowl.
Technical Paper

Improving the NOX-CO2 Trade-Off of an HCCI Engine Using a Multi-Hole Injector

The combustion and emission performance of two high-pressure GDI-type injectors are compared in an automotive HCCI engine during low-load, stratified operation. One of these, an 8-hole injector with 70° spray angle, provides significant reduction in NOX emissions at a given fuel-to-CO2 conversion efficiency (i.e., an improved NOX-CO2 trade-off) compared to the other, a 53° swirl injector. In contrast, attempts to enhance the NOX-CO2 trade-off using alternate charge-stratification strategies such as split injection and high intake velocity are shown to be less successful. The 8-hole and swirl injectors are also compared using the optical techniques of Mie scattering (spray visualization), laser-induced fluorescence imaging (fuel distribution measurement), and direct combustion imaging. The resulting data suggest two possible explanations for the superior performance of the 8-hole injector.
Technical Paper

Simulation of the Effect of Spatial Fuel Distribution Using a Linear-Eddy Model

Prior HCCI optical engine experiments utilizing laser-induced fluorescence (LIF) measurements of stratified fuel-air mixtures have demonstrated the utility of probability density function (PDF) statistics for correlating mixture preparation with combustion. However, PDF statistics neglect all spatial details of in-cylinder fuel distribution. The current computational paper examines the effects of spatial fuel distribution on combustion using a novel combination of a 3-D CFD model with a 1-D linear-eddy model of turbulent mixing. In the simulations, the spatial coarseness of initial fuel distribution prior to the start of heat release is varied while keeping PDF statistics constant. Several cases are run, and as the initial mixture is made coarser, combustion phasing monotonically advances due to high local equivalence ratios that persist longer. The effect of turbulent mixing is more complex.
Technical Paper

Predicting Emissions from HCCI Engines using LIF Imaging

This paper proposes a method for quantitatively predicting emissions from a homogeneous-charge compression-ignition (HCCI) engine using laser-induced fluorescence (LIF) imaging of the in-cylinder fuel distribution. The prediction scheme, which is applied to stratified operation, is based on the premise that local fuel-air packets at a given equivalence ratio burn as if in an isolated homogeneous mixture at the same equivalence ratio. Insofar as the premise holds true, the emissions produced by each packet can be predicted using a look-up table of exhaust emission values measured during homogeneous operation. LIF images of fuel distribution during stratified operation are reduced to probability density functions (PDF) that, together with the look-up tables, allow prediction of engine-out emissions. Despite the simplifications associated with the prediction scheme, predicted values of CO2, CO and HC emissions each agree to within 15% of total fuel carbon for low-load operation.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Journal Article

An Optical Study of Mixture Preparation in a Hydrogen-fueled Engine with Direct Injection Using Different Nozzle Designs

Mixture formation in an optically accessible hydrogen-fueled engine was investigated using Planar Laser-Induced Fluorescence (PLIF) of acetone as a fuel tracer. The engine was motored and fueled by direct high-pressure injection. This paper presents the evolution of the spatial distribution of the ensemble-mean equivalence ratio for six different combinations of nozzle design and injector geometry, each for three different injection timings after intake-valve closure. Asymmetric single-hole and 5-hole nozzles as well as symmetric 6-hole and 13-hole nozzles were used. For early injection, the low in-cylinder pressure and density allow the jet to preserve its momentum long enough to undergo extensive jet-wall and (for multi-hole nozzles) jet-jet interaction, but the final mixture is fairly homogeneous. Intermediately timed injection yields inhomogeneous mixtures with surprisingly similar features observed for all multi-hole injectors.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Technical Paper

Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments

This work investigates the potential of in-cylinder thermal stratification for reducing the pressure-rise rate in HCCI engines, and the coupling between thermal stratification and combustion-phasing retard. A combination of computational and experimental results is employed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKIN III kinetics-rate code, and kinetic mechanisms for iso-octane. This study shows that the potential for extending the high-load operating limit by adjusting the thermal stratification is very large. With appropriate stratification, even a stoichiometric charge can be combusted with low pressure-rise rates, giving an output of 16 bar IMEPg for naturally aspirated operation. For more typical HCCI fueling rates (ϕ = 0.38 - 0.45), the optimal charge-temperature distribution is found to depend on both the amount of fuel and the combustion phasing.
Technical Paper

Examination of Iso-octane/Ketone Mixtures for Quantitative LIF Measurements in a DISI Engine

Mixtures of low concentrations of 3-pentanone in iso-octane are used widely in an attempt to obtain quantitative measurements of fuel equivalence ratio in direct-injection, spark-ignition engines. Despite similar boiling temperatures and heats of vaporization, 3-pentanone has been found to evaporate from the mixture more rapidly than the iso-octane. Thus, the signal detected by the planar laser-induced fluorescence (PLIF) diagnostic cannot accurately represent fuel distribution during spray evaporation and air-fuel mixing in an engine. Using an evaporation chamber, we demonstrate the non-steady PLIF signal of the iso-octane/3-pentanone mixture during steady evaporation. Significant improvement in the consistency of the PLIF signal during evaporation is achieved by adding a heavier ketone (3-hexanone) tracer to compensate for the early depletion of the 3-pentanone.
Technical Paper

A Bayesian Approach for Aggregating Test Data Across Sub-Populations

In the process of conducting a reliability analysis of a system, quite often the population of interest is not homogenous; consisting of sub-populations which arise as production operations are adjusted, component suppliers are changed, etc. While these sub-populations are each unique in many ways, they also have much in common. It is also common for data to be available from a variety of different test regimes, e.g. environmental testing and fleet maintenance observations. Hierarchical Bayesian methods provide an organized, objective means of estimating the reliability of the individual systems, the sub-population reliability as well as the reliability of the entire population. This paper provides an introduction to a Bayesian approach that can be extended for more complicated situations.
Technical Paper

Measuring the Cylinder-to-Cylinder EGR Distribution in the Intake of a Diesel Engine During Transient Operation

In this work, we describe an optical diagnostic based on infrared-absorption spectroscopy that can be applied to production-like engines to evaluate the cylinder-to-cylinder EGR distribution. We have applied this diagnostic to a small-bore Diesel engine and performed measurements under both steady-state and transient conditions. The IR absorption diagnostic is shown to have a very low detection limit along with high precision, and produces highly credible results. Both crankangle-and cycle-resolved data were acquired in order to demonstrate the temporal measurement of the EGR concentration during the intake stroke, and during a sequence of cycles that define an engine transient. The results confirm the capabilities of the diagnostic, and in addition, illustrate interesting insight regarding the cylinder-to-cylinder EGR distribution.
Technical Paper

Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison with Experiments

A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Refining Measurement Uncertainties in HCCI/LTGC Engine Experiments

This study presents estimates for measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility. A previously presented framework for quantifying those uncertainties developed uncertainty estimates based on the transducers manufacturers’ published tolerances. The present work utilizes the framework with improved uncertainty estimates in order to more accurately represent the actual uncertainties of the data acquired in the HCCI/LTGC laboratory, which ultimately results in a reduction in the uncertainty from 30 to less than 1 kPa during the intake and exhaust strokes. Details of laboratory calibration techniques and commissioning runs are used to constrain the sensitivities of the transducers relative to manufacturer supplied values.