Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Filtration Requirements and Evaluation Procedure for a Rotary Injection Fuel Pump

1997-10-01
972872
A cooperative research and development program was organized to determine the critical particle size of abrasive debris that will cause significant wear in rotary injection fuel pumps. Various double-cut test dusts ranging from 0-5 to 10-20 μm were evaluated to determine which caused the pumps to fail. With the exception of the 0-5-μm test dust, all other test dust ranges evaluated caused failure in the rotary injection pumps. After preliminary testing, it was agreed that the 4-8-μm test dust would be used for further testing. Analysis revealed that the critical particle size causing significant wear is 6-7 μm. This is a smaller abrasive particle size than reported in previously published literature. A rotary injection pump evaluation methodology was developed. During actual operation, the fuel injection process creates a shock wave that propagates back up the fuel line to the fuel filter.
Technical Paper

Effects of Water on Distillate Fuel Lubricity

1998-10-19
982568
The continuing trend toward “cleaner” distillate fuels has prompted concerns about the lubricity characteristics of current and future distillates. Since many U.S. Navy ships utilize seawater-compensated fuel tanks to maintain the ship's trim, the Navy performed a detailed study in order to better understand the relationship between fuel water content and lubricity characteristics. The lubricity test methods, modified for this study, were ASTM D 6078 (SLBOCLE), D 6079 (HFRR), and D 5001 (BOCLE). The results indicated that, with few exceptions, there was generally no evidence of a correlation between the water content of the fuels and the corresponding lubricity measurements as determined by the laboratory tests.
Technical Paper

Effect of Low-Lubricity Fuels on Diesel Injection Pumps - Part II:Laborator Evaluation

1992-02-01
920824
This paper is the second of two that describe the effects of low-lubricity fuels on diesel injection pump performance. The first paper describes the primary failure mechanisms and wear processes in a number of failed pumps removed from both military and civilian vehicles that had been operated on Jet A-1 and diesel fuels. However, the multitude of unregulated parameters in practical operation renders quantitative comparison between different fuels and pump combinations impractical. This paper describes the degradation in pump performance and the wear processes associated with fuels of varying lubricity in the well-defined environment of a pump test stand. The test methodology concentrates on those areas previously demonstrated to be most susceptible to wear. The results indicate that pump durability is reduced by highly refined low-viscosity fuels, but may be successfully counteracted by either improved metallurgy or lubricity additives.
X