Refine Your Search

Topic

Author

Affiliation

Search Results

Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Video

Evaluation of a NOx Transient Response Method for OBD of SCR Catalysts

2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Video

Overview of Southwest Research Institute Activities in Engine Technology R&D

2012-05-10
The worldwide drive to improved energy efficiency for engine systems is being supported by several engine R&D programs at Southwest Research Institute (SwRI). This research includes large programs in major-market engine categories, such as heavy-duty, non-road, and light-duty; and includes diesel, gasoline, and alternative fuel aspects. This presentation describes several key diesel engine programs being pursued under the SwRI Clean High Efficiency Diesel Engine consortium (CHEDE-VI), whose goal is to demonstrate future diesel technology exceeding 50% brake thermal efficiency. Additionally, SwRI?s High Efficiency Dilute Gasoline Engines consortium (HEDGE-II), is reviewed, where advanced technology for ultra-high efficiency gasoline engines is being demonstrated. The HEDGE-II program is built upon dilute gasoline engine research, where brake thermal efficiencies in excess of 42% are being obtained for engines applicable to the light-duty market. Presenter Charles E.
Technical Paper

An Engine Start/Stop System for Improved Fuel Economy

2007-04-16
2007-01-1777
During city traffic or heavily congested roads, a vehicle can consume a substantial amount of fuel idling when the vehicle is stopped. Due to regulation enforcement, auto manufacturers are developing systems to increase the mileage and reduce emissions. Turning off the engine at traffic lights and regenerative braking systems are simple ways to reduce emissions and fuel consumption. In order to develop strong manufacturer and consumer interest, this type of operation needs to be automated such that the stop/start functionality requires no driver interaction and takes place without the intervention of the vehicle operator. Valeo Electrical Systems has developed such a system that replaces the OEM engine alternator with a starter/alternator driven by a standard multi-ribbed V belt. To avoid a break and dual voltage network, this system is based on a 12V electrical system using an Enhanced Power Supply.
Technical Paper

Deploying Connected VehicleSM using the FDOT SunGuide® Software: Technology Leadership Brief

2012-10-08
2012-01-9016
The State of Florida initiated the SunGuide® Advanced Traffic Management System (ATMS) software development program in October 2003; that software is deployed in over 15 Traffic Management Centers (TMCs) throughout the major cities in Florida. One of SunGuide's biggest strengths is a software architecture that allows for short development times for new functionality. This paper describes the system design, implementation, and lessons learned from the development of the SunGuide Connected Vehicle Subsystem (CVS). The SunGuide CVS receives real-time speed, location, and heading data from instrumented vehicles and uses that data in a manner similar to its use of traffic detector data to provide information to the TMC. In addition to the vehicle providing data to the TMC, the TMC may create and publish Traveler Advisory Messages to the vehicle as part of the SunGuide Event Management response plans.
Technical Paper

Intricacies of SAE #2 Computerized Clutch Friction Durability Testing

1993-10-01
932847
This paper discusses the implications of computerizing the SAE #2 clutch friction durability tests that General Motors Corporation and Ford Motor Company require for automatic transmission fluid certification. There are three reasons for this paper. 1) Friction durability testing is a significant part of a much larger battery of tests needed to qualify a fluid. 2)There have been recent modifications concerning computerization of both the Ford and GM tests. 3) Because there are only two OEM qualified testing facilities, the details of certain testing intricacies in the areas of data acquisition, reduction and reporting may not be as understood as well as in other areas of automotive-based standardized testing. Formulators of automatic transmission fluid need to be aware of all details surrounding the collection and evaluation of the data that will result in the final test report.
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Technical Paper

ERIC - A System to Modify Vehicle Emissions Through Computer Controlled Signal Interception

1999-03-01
1999-01-0773
A computer controlled system capable of intercepting and performing closed-loop control of a vehicle subsystem during targeted modes of operation was developed. The system has been given the acronym ERIC, for Emissions Reduction Intercept and Control system. This study was prompted by the need for the ability to modify engine controls through targeted modes of operation, without altering the majority of engine operation, to assist in the integration of exhaust aftertreatment and engine systems. The general concept and approach for applying the ERIC method, and application of the system to perform targeted, mode-activated EGR control intercept on a 1997 Ford Crown Victoria, are described in this paper. Data are presented that demonstrate how the problem mode was identified, targeted, mapped, and modified. FTP-75 test data are presented to show the impact of this particular application.
Technical Paper

Spectrometric Analysis of Used Oils

1969-02-01
690776
This paper discusses the techniques and diagnostic significance of atomic absorption, atomic emission, and infrared spectrometric analysis of crankcase lubricants, with the use of supplementary data where pertinent. The parameters affecting used oil analytical data are discussed in terms of examples from Army general purpose vehicle test engines. Wear metals in used gear oils are also discussed and examples are given. Analytical methods and their applications are fully described, and the equipment and procedures for infrared spectroscopy and gas chromatography techniques are outlined.
Technical Paper

Evaluation of Cold Start Technologies on a 3L Diesel Engine

2016-04-05
2016-01-0823
Increasingly stringent emissions regulations require that modern diesel aftertreatment systems must warm up and begin controlling emissions shortly after startup. While several new aftertreatment technologies have been introduced that focus on lowering the aftertreatment activation temperature, the engine system still needs to provide thermal energy to the exhaust for cold start. A study was conducted to evaluate several engine technologies that focus on improving the thermal energy that the engine system provides to the aftertreatment system while minimizing the impact on fuel economy and emissions. Studies were conducted on a modern common rail 3L diesel engine with a custom dual loop EGR system. The engine was calibrated for low engine-out NOx using various combustion strategies depending on the speed/load operating condition.
Technical Paper

Comparison of Hydrocarbon Measurement with FTIR and FID in a Dual Fuel Locomotive Engine

2016-04-05
2016-01-0978
Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
Technical Paper

A Comprehensive CFD-FEA Conjugate Heat Transfer Analysis for Diesel and Gasoline Engines

2019-04-02
2019-01-0212
As the efforts to push capabilities of current engine hardware to their durability limits increases, more accurate and reliable analysis is necessary to ensure that designs are robust. This paper evaluates a method of Conjugate Heat Transfer (CHT) analysis for a gasoline and a diesel engine that combines combustion Computational Fluid Dynamics (CFD), engine Finite Element Analysis (FEA), and cooling jacket CFD with the goal of obtaining more accurate temperature distribution and heat loss predictions in an engine compared to standard de-coupled CFD and FEA analysis methods. This novel CHT technique was successfully applied to a 2.5 liter GM LHU gasoline engine at 3000 rpm and a 15.0 liter Cummins ISX heavy duty diesel engine operating at 1250 rpm. Combustion CFD simulations results for the gasoline and diesel engines are validated with the experimental data for cylinder pressure and heat release rate.
Technical Paper

Detailed Characterization of Criteria Pollutant Emissions from D-EGR® Light Duty Vehicle

2016-04-05
2016-01-1006
In this study, the criteria pollutant emissions from a light duty vehicle equipped with Dedicated EGR® technology were compared with emissions from an identical production GDI vehicle without externally cooled EGR. In addition to the comparison of criteria pollutant mass emissions, an analysis of the gaseous and particulate chemistry was conducted to understand how the change in combustion system affects the optimal aftertreatment control system. Hydrocarbon emissions from the vehicle were analyzed usin g a variety of methods to quantify over 200 compounds ranging in HC chain length from C1 to C12. The particulate emissions were also characterized to quantify particulate mass and number. Gaseous and particulate emissions were sampled and analyzed from both vehicles operating on the FTP-75, HWFET, US06, and WLTP drive cycles at the engine outlet location.
Technical Paper

Particle Emissions from Gasoline Direct Injection Engines during Engine Start-Up (Cranking)

2019-04-02
2019-01-1182
Engine start-up (cranking) can be an important source of particle emissions from vehicles. With the penetration of GDI vehicles in the global vehicle fleet, it is important to analyze and understand the contribution of start-up particle emissions from GDI vehicles, and the potential effects of fuel properties on that process. In this work, chassis dynamometer based investigation on the effect of several gasoline fuels (commercial and blended) on both, naturally aspirated and turbocharged GDI vehicles were conducted to understand the importance of engine start up, in particular, cranking. 10 commercially available gasoline fuels were tested on a naturally aspirated 2010 model year GDI vehicle, 3 among these commercially available fuels were tested on another 2009 model year turbocharged GDI vehicle, and 8 blended gasoline fuels were tested on 12 other GDI vehicles (7 turbocharged and 5 naturally aspirated) ranging in model years 2011-2015.
Technical Paper

A Second Generation Expert System for Diagnosis and Repair of Mechanical and Electrical Devices

1986-03-01
860337
Existing expert systems have a high percentage agreement with human experts in a particular field in many situations. However, in many ways their overall behavior is not like that of a human expert. These areas include the inability to give flexible, functional explanations of their reasoning processes and the failure to degrade gracefully when dealing with problems at the periphery of their knowledge. These two important shortcomings can be improved when the right knowledge is available to the system. This paper presents an expert system design, called the Integrated Diagnostic Model (IDM), that integrates two sources of knowledge: a shallow, empirically-oriented, experiential knowledge base and a deep, functionally-oriented, physical knowledge base. To demonstrate the IDM's usefulness in the problem area of diagnosis and repair of electrical and mechanical devices, two implementations and our experience with them is described.
Technical Paper

Low Heat Rejection Engines

1986-03-01
860314
The paper gives a general overview of the state-of-the-art in low heat rejection (LHR) engines. It also gives experimental results obtained at SwRI with a single-cylinder research engine using an electrically heated cylinder liner to simulate LHR operation and examine the effects of increased liner temperature. It was concluded that the improvement in fuel economy from LHR operation is negligible in naturally-aspirated (NA) engines, about 7 percent in turbocharged (TC) engines and about 15 percent in turbocompound (TCO) engines. LHR operation reduces power in NA engines only. It increases NOx emissions by around 15 percent, but reduces HC and CO emissions. LHR operation offers benefits in the reduction of noise and smoke, and in operation on low cetane fuels. Much more research is needed to overcome the practical problems before LHR engines can be put into production.
Technical Paper

Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

2005-10-24
2005-01-3793
Research has shown that there are many factors that affect the long-term performance of nitrogen oxides (NOx) control systems used in diesel engine applications. However, if the NOx emissions can be accurately monitored, it might be possible to restore performance by making adjustments to the control systems. This paper presents results from a study that tested the durability of 25 NOx sensors exposed to heavy-duty diesel exhaust for 6,000 hours. The study, conducted by the Advanced Petroleum-Based Fuels - Diesel Emission Controls (APBF-DEC) project, tested the sensors at various locations in the exhaust stream.
Technical Paper

42-Volt Electric Air Conditioning System Commissioning and Control for a Class-8 Tractor

2004-03-08
2004-01-1478
The electrification of accessories using a fuel cell as an auxiliary power unit reduces the load on the engine and provides opportunities to increase propulsion performance or reduce engine displacement. The SunLine™ Class 8 tractor electric accessory integration project is a United States Army National Automotive Center (NAC™) initiative in partnership with Cummins Inc., Dynetek™ Industries Ltd., General Dynamics C4 Systems, Acumentrics™ Corporation, Michelin North America, Engineered Machine Products (EMP™), Peterbilt™ Motors Company, Modine™ Manufacturing and Masterflux™. Southwest Research Institute is the technical integration contractor to SunLine™ Services Group. In this paper the SunLine™ tractor electric Air Conditioning (AC) system is described and the installation of components on the tractor is illustrated. The AC system has been designed to retrofit into an existing automotive system and every effort was made to maintain OEM components whenever modifications were made.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
X