Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Advanced Ignition Systems Evaluations for High-Dilution SI Engines

2014-10-13
2014-01-2625
A series of ignition systems were evaluated for their suitability for high-EGR SI engine applications. Testing was performed in a constant-volume combustion chamber and in a single-cylinder research engine, with EGR rates of up to 40% evaluated. All of the evaluated systems were able to initiate combustion at a simulated 20% EGR level, but not all of the resulting combustion rates were adequate for stable engine operation. High energy spark discharge systems were better, and could ignite a flame at up to 40% simulated EGR, though again the combustion rates were slow relative to that required for stable engine performance. The most effective systems for stable combustion at high EGR rates were systems which created a large effective flame kernel and/or a long kernel lifetime, such as a torch-style prechamber spark plug or a corona discharge igniter.
Journal Article

Methanol Fuel Testing on Port Fuel Injected Internal-Only EGR, HPL-EGR and D-EGR® Engine Configurations

2017-10-08
2017-01-2285
The primary focus of this investigation was to determine the hydrogen reformation, efficiency and knock mitigation benefits of methanol-fueled Dedicated EGR (D-EGR®) operation, when compared to other EGR types. A 2.0 L turbocharged port fuel injected engine was operated with internal EGR, high-pressure loop (HPL) EGR and D-EGR configurations. The internal, HPL-EGR, and D-EGR configurations were operated on neat methanol to demonstrate the relative benefit of D-EGR over other EGR types. The D-EGR configuration was also tested on high octane gasoline to highlight the differences to methanol. An additional sub-task of the work was to investigate the combustion response of these configurations. Methanol did not increase its H2 yield for a given D-EGR cylinder equivalence ratio, even though the H:C ratio of methanol is over twice typical gasoline.
Technical Paper

Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst

2017-03-28
2017-01-0957
It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
Technical Paper

The Impact of Engine Operating Conditions on Reformate Production in a D-EGR Engine

2017-03-28
2017-01-0684
Dedicated EGR has shown promise for achieving high efficiency with low emissions [1]. For the present study, a 4-cylinder turbocharged GDI engine which was modified to a D-EGR configuration was used to investigate the impact of valve phasing and different injection strategies on the reformate production in the dedicated cylinder. Various levels of positive valve overlap were used in conjunction with different approaches for dedicated cylinder over fueling using PFI and DI fuel systems. Three speed-load combinations were studied, 2000 rpm 4 bar IMEPg, 2000 rpm 12 bar IMEPg, and 4000 rpm 12 bar IMEPg. The primary investigation was conducted to map out the dedicated cylinders' performance at the operating limits of intake and exhaust cam phasing. In this case, the limits were defined as conditions that yielded either no reformate benefit or led to instability in the dedicated cylinder.
Technical Paper

Effect of Micro-Hole Nozzle on Diesel Spray and Combustion

2018-04-03
2018-01-0301
The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. One area of promise, injector nozzles with micro-holes (i.e. down to 30 μm), still need further investigation. Reduction of nozzle orifice diameter and increased fuel injection pressure typically promotes air entrainment near-nozzle during start of injection. This leads to better premixing and consequently leaner combustion, hence lowering the formation of soot. Advances in numerical simulation have made it possible to study the effect of different nozzle diameters on the spray and combustion in great detail. In this study, a baseline model was developed for investigating the spray and combustion of diesel fuel at the Spray A condition (nozzle diameter of 90 μm) from the Engine Combustion Network (ECN) community.
Technical Paper

Investigation of Lubrication Oil as an Ignition Source in Dual Fuel Combustion Engine

2013-10-14
2013-01-2699
Dual fuel engines have shown significant potential as high efficiency powerplants. In one example, SwRI® has run a high EGR, dual-fuel engine using gasoline as the main fuel and diesel as the ignition source, achieving high thermal efficiencies with near zero NOx and smoke emissions. However, assuming a tank size that could be reasonably packaged, the diesel fuel tank would need to be refilled often due to the relatively high fraction of diesel required. To reduce the refill interval, SwRI investigated various alternative fluids as potential ignition sources. The fluids included: Ultra Low Sulfur Diesel (ULSD), Biodiesel, NORPAR (a commercially available mixture of normal paraffins: n-pentadecane (normal C15H32), and n-hexadecane (normal C16H34)) and ashless lubrication oil. Lubrication oil was considered due to its high cetane number (CN) and high viscosity, hence high ignitability.
Technical Paper

Real Fuel Effects on Low Speed Pre-Ignition

2018-04-03
2018-01-1456
To better understand real fuel effects on LSPI, a matrix was developed to vary certain chemical and physical properties of gasoline. The primary focus of the study was the impact of paraffinic, olefinic, and aromatic components upon LSPI. Secondary goals of this testing were to study the impact of ethanol content and fuel volatility as defined by the T90 temperature. The LSPI rate increased with ethanol content but was insensitive to olefin content. Additionally, increased aromatic content uniformly led to increased LSPI rates. For all blends, lower T90 temperatures resulted in decreased LSPI activity. The correlation between fuel octane (as RON or MON) suggests that octane itself does not play a role; however, the sensitivity of the fuel (RON-MON) does have some correlation with LSPI. Finally, the results of this analysis show that there is no correlation between the laminar flame speed of a fuel and the LSPI rate.
Technical Paper

Combined Fuel and Lubricant Effects on Low Speed Pre-Ignition

2018-09-10
2018-01-1669
Many studies on low speed pre-ignition have been published to investigate the impact of fuel properties and of lubricant properties. Fuels with high aromatic content or higher distillation temperatures have been shown to increase LSPI activity. The results have also shown that oil additives such as calcium sulfonate tend to increase the occurrence of LSPI while others such as magnesium sulfonate tend to decrease the occurrence. Very few studies have varied the fuel and oil properties at the same time. This approach is useful in isolating only the impact of the oil or the fuel, but both fluids impact the LSPI behavior of the engine simultaneously. To understand how the lubricant and fuel impacts on LSPI interact, a series of LSPI tests were performed with a matrix which combined fuels and lubricants with a range of LSPI activity. This study was intended to determine if a low activity lubricant could suppress the increased LSPI from a high activity fuel, and vice versa.
Technical Paper

Advanced 1-D Ignition and Flame Growth Modeling for Ignition and Misfire Predictions in Spark Ignition Engines

2021-04-06
2021-01-0376
Simulating high amounts of exhaust gas recirculation in spark ignited engines to predict combustion using the currently available CFD modeling approaches is a challenge and does not always give reasonable matches with experimental observations. One of the reasons for the mismatch lies with the secondary circuit treatment of the ignition coil and the resulting energy deposition or a complete lack of it thereof. An ignition modeling approach is developed in this work which predicts the energy transfer from the electrical circuit to the gases in the combustion chamber leading to flame kernel growth under high EGR and high gas flow velocity conditions. Secondary circuit sub-model includes secondary side of the coil, spark plug and spark gap. The sub-model calculates the delivered energy to the gas based on given circuit properties and total initial electrical energy.
Technical Paper

Combustion Stabilization for Enriched D-EGR Applications via Air-Assisted Pre-Chambers

2021-04-06
2021-01-0481
The dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on several spark-ignited engines at both low and high-load conditions. Syngas (H2+CO) is produced by the dedicated cylinder (D-cyl) which operates at a rich air-fuel ratio. The syngas helps to stabilize combustion under highly dilute conditions at low loads as well as mitigating knock at high loads. The D-cyl produces all the EGR for the engine at a fixed rate of approximately 25% EGR for a four-cylinder engine and 33% EGR for a six-cylinder engine. The D-cyl typically runs up to an equivalence ratio of 1.4 for gasoline-fueled engines, beyond which the combustion becomes unstable due to the decreasing laminar burning velocity caused by rich conditions. Conventional active-fueled and passive pre-chambers have benefits of inducing multi-site ignition and enhancing turbulence in the main chamber.
Technical Paper

Impact of Swirl Ratio on Combustion Performance of a Non-Pent Roof Combustion Chamber Engine

2015-04-14
2015-01-0743
In response to the sensitivity to diesel aftertreatment costs in the medium duty market, a John Deere 4045 was converted to burn gasoline with high levels of EGR. This presented some unique challenges not seen in light duty gasoline engines as the flat head and diesel adapted ports do not provide optimum in-cylinder turbulence. As the bore size increases, there is more opportunity for knock or incomplete combustion to occur. Also, the high dilution used to reduce knock slows the burn rates. In order to speed up the burn rates, various levels of swirl were investigated. A four valve head with different levels of port masking showed that increasing the swirl ratio decreased the combustion duration, but ultimately ran into high pumping work required to generate the desired swirl. A two valve head was used to overcome the breathing issue seen in the four valve head with port masking.
Technical Paper

Evaluation of Diesel Spray with Non-Circular Nozzle - Part I: Inert Spray

2019-01-15
2019-01-0065
Numerous studies have characterized the impact of high injection pressure and small nozzle holes on spray quality and the subsequent impact on combustion. Higher injection pressure or smaller nozzle diameter usually reduce soot emissions owing to better atomization quality and fuel-air mixing enhancement. The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. An alternate approach impacting spray quality is investigated in this paper, specifically the impact of non-circular nozzles. The concept was explored experimentally in an optically accessible constant-volume combustion chamber (CVCC). Non-reacting spray evaluations were conducted at various ambient densities (14.8, 22.8, 30 kg/m3) under inert gas of Nitrogen (N2) while injection pressure was kept at 100 MPa. Shadowgraph imaging was used to obtain macroscopic spray characteristics such as spray structure, spray penetration, and the spray cone angle.
Journal Article

The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior

2017-03-28
2017-01-0685
The impact of additive and oil chemistry on low speed pre-ignition (LSPI) was evaluated. An additive metals matrix varied the levels of zinc dialkyldithiophosphate (ZDDP), calcium sulfonate, and molybdenum within the range of commercially available engine lubricants. A separate test matrix varied the detergent chemistry (calcium vs. magnesium), lubricant volatility, and base stock chemistry. All lubricants were evaluated on a LSPI test cycle developed by Southwest Research Institute within its Pre-Ignition Prevention Program (P3) using a GM LHU 2.0 L turbocharged GDI engine. It was observed that increasing the concentration of calcium leads to an increase in the LSPI rate. At low calcium levels, near-zero LSPI rates were observed. The addition of zinc and molybdenum additives had a negative effect on the LSPI rate; however, this was only seen at higher calcium concentrations.
X