Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Co-Simulation and Analysis on Aerodynamic Noise at the Engine Inlet

2018-04-03
2018-01-0686
As the intake noise is a major contributing factor to automotive passenger compartment noise levels, it has received much more attention than before. Because the plastic manifolds could induce and transmit more noise owing to their lighter weight, aerodynamic noise has become a more serious problem in plastic manifolds than in conventional aluminum-made manifolds. Due to the complexity of aerodynamic noise of the intake system, it is difficult to predict the noise precisely, especially for the part whose frequency is higher than 1000 Hz. This paper introduces a new co-simulation method to simulate the aerodynamic noise at the engine inlet. With the coupled simulation between two programs, GT-Power and Fluent, it could simulate the gas flow inside the engine intake system, under the actual running condition of engine.
Technical Paper

The Application and Optimization of EGR-LNT Synergetic Control System on Lean-burn Gasoline Engine

2015-04-14
2015-01-1036
Ensuring lower emissions and better economy (fuel economy and after-treatment economy) simultaneously is the pursuit of future engines. An EGR-LNT synergetic control system was applied to a modified lean-burn CA3GA2 gasoline engine. Results showed that the synergetic control system can achieve a better NOx reduction than sole EGR and sole LNT within a proper range of upstream EGR rate and without the penalty in fuel consumption. It also has the potential to save costly noble metals in LNT, but excessive or deficient upstream EGR would make the synergetic control system inefficiency. In order to guarantee the objectivity of the effect of EGR-LNT synergetic control system on NOx reduction, another modified lean-burn CA4GA5 gasoline engine was additionally tested.
X