Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

Evaluation of Potential Benefit of 6 × 2 Over 6 × 4 Drive Mode to Improve the Fuel Economy on Heavy Commercial Vehicle

2009-04-20
2009-01-1359
Reduction in the drivetrain losses of a vehicle is one of the important contributing factors to amplify the fuel economy of vehicle, particularly in heavy commercial vehicle. The conversion of 6 × 4 drive vehicle into 6 × 2 drive has a benefit of improving the fuel economy of a vehicle by reducing the drivetrain losses occurring in the second rear axle. It was cultured by calculation that in 6 × 2 drive the tractive force available at the wheels, of heavy commercial vehicle with GVW of 44 tons and above, will be much higher than the frictional force transmission capacity of tires, when the engine is producing peak torque on the driving duty cycle like going on steep gradient road. In such situations the tires will start to slip and may result in deteriorating the fuel economy and excessive tire wear. On the other side the flat road driving duty cycle in 6 × 2 drive will give better fuel economy than 6 × 4 drive.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Technical Paper

Design of Hybrid Air Conditioning System Using Phase Change Material for Commercial Sleeper Vehicles

2022-11-09
2022-28-0448
Unfavorable climates, fatigue, safety & deprived sleep of driver’s leads to use of AC system for their quick thermal comfort during night with engine ON. This scenario is very critical from a human’s safety & vehicle functionality point of view. This also consumes an additional 10-15% of fuel requirements in AC running conditions. So, to address the social problems of driver’s sleep and pollution-free environment by reducing the use of fossil fuels, there is a need for alternative techniques for air cooling which work during engine OFF condition. Various alternative options for air cooling have been reviewed. Accordingly, the packaging flexibility of phase change material (PCM) technology makes it easy to implement, yet effective usage of large quantity stored PCM, needs optimization. This paper proposes a design of a hybrid air conditioning system for sleeper commercial vehicles using a combined conventional compression and phase change material.
Technical Paper

Steering Linkage Induced Vehicle Pull during Straight Line Braking

2012-09-24
2012-01-1916
The vehicle pull (sideways) is a complex outcome of many parameters in an automobile vehicle. This is mainly due to steering, suspension, brake, wheels and chassis parameters. The road conditions like road camber also plays an important role in vehicle pull behavior. All efforts are put in design and manufacturing processes to maintain controlled vehicle pull in normal driving condition. Even though normal vehicle pull seems to be in acceptance limit (subjectively), its intensity increases many folds at the time of harsh braking. In these kind of panic situations where driver firmly holds on the steering wheel, it is expected that the vehicle should stop without deviating too much sideways from its intended straight line path to avoid any kinds of accidents. This work is an outcome of systematic study carried out to understand the root cause of brake pull as a field complaint on current production vehicles and adopting best possible solutions to minimize the brake pull.
Technical Paper

Development of Dc Motor based E-Shift Mechanism for Manual Transmission

2015-04-14
2015-01-1095
Transmission designs over the years have evolved significantly achieving more efficiency in terms of fuel economy, comfort and reduction in emissions. This paper describes a Dc motor based E-shift mechanism which automates an existing manual transmission and clutch system to give comfort and ease for gear shifting. The basic idea of E-shift mechanism is to make hassle free gear shifting of manual transmission at sole command of driver without any control strategy for automatic shifting as in case of Automated Manual transmission (AMT). The E-shift mechanism will eliminate the manual efforts required for pressing clutch pedal and shifting gear, giving more ease while driving. The developed mechanism can be retro fitted on existing manual transmission without any major modification at lower cost. The E-shift mechanism uses two actuators for gear shifting and one actuator for clutch actuation.
Technical Paper

Optimization of State Machine Architecture for Automotive Body Control

2016-02-01
2016-28-0233
The OEM's aim is to reduce development time and testing cost, hence the objective behind this work is to achieve a flexible stateflow model so that changes in the application during supply chain or development, on adding/deleting any switches, varying timer cycle, changing the logic for future advancements or else using the logic in different application, would end in minimal changes in the chart or in its states which would reflect least changes in the code. This research is about designing state machine architecture for chime/buzzer warning system and wiper/washer motor control system. The chime/buzzer stateflow chart includes various input switches like ignition, parking, seat belt buckle, driver door and speed accompanied with warning in the form of LED, lamp and buzzer. The logic is differentiated according to gentle and strong warning. Various conditions and scenarios of the vehicle and driver are considered for driver door and seat belt which is resolved in the chart.
Technical Paper

Multivariate Analysis to Assess the Repeatability of Real World Tests

2016-04-05
2016-01-0320
In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
Technical Paper

Identification of Gear Shift Quality as a Key Attribute in Commercial Vehicle Development

2017-11-27
2017-01-7011
Indian automotive market has grown extremely competitive in the recent past. In order to meet the ever growing expectations of the customers, automobile manufacturers are compelled to offer their products under superior quality with supreme comfort. Customers wish of high levels of tactile comfort in the cabin compartment and effortless operation of peripherals will result in negligible fatigue and a pleasant drive, needs to be duly fulfilled. One has to focus more on Gear shift lever and Steering wheel, which are being the most sensitive tactile points in an automobile. The gear shift lever knob is frequently used and significantly influences the perception of the shift comfort for a driver during actual vehicle application.
Technical Paper

Model-Based System Engineering Approach for Steering Feel Simulation for Passenger Vehicles

2021-09-22
2021-26-0400
The basic function of steering system is to control the direction of the vehicle. The driver applies effort on the steering wheel and receives feedback through the steering system as a result of tire to road interaction. This feedback consists of a haptic (force) feedback which is directly felt by the driver and it is termed as steering feel. Precise steering feel gives better driving experience and is decisive factor for customer to buy a vehicle as well as for OEMs in building brand image. Along with steering parameters, suspension and tire parameters also has significant impact on steering feel. In past, modelling of the steering system was done at component level or with simplified vehicle system. Such approaches had not given accurate results of steering feel metric and resulted in incorrect steering design parameter selection. In order to replicate actual vehicle characteristics, complex and detailed modelling of steering, tire and suspension subsystems is necessary.
X