Refine Your Search

Topic

Author

Search Results

Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Technical Paper

Driveline Torsional Vibration Analysis and Clutch Damper Characteristics Optimization for reducing Commercial Vehicle Noise and Vibrations

2021-08-31
2021-01-1102
The automotive world has seen an increase in customer demands for vehicles having low noise and vibrations. One of the most important source of noise and vibrations associated with vehicles is the vibration of driveline systems. For commercial vehicles, the refinement of drivelines from NVH point of view is complex due to the cost and efficiency constraints. The typical rear wheel drive configuration of commercial vehicles mostly amplifies the torsional vibrations produced by engine which results into higher noise in the vehicle operating speed range. Theoretically, there are various options available for fine tuning the torsional vibration performance of the vehicle drive train. The mass moments of inertia and stiffness of the drivetrain components play significant role in torsional vibration damping, however, except minor changes to flywheel mass, it is hardly possible to change other components, subject to design limitations.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Enhancing Productivity in Design by Front Loading and Simultaneous Engineering Using CAD Morphing

2020-04-14
2020-01-0496
Automotive OEMs are launching multiple products with ever reducing development time, balancing costs, quality and time to market, with clear focus on performance and weight. Platform architecture concepts, modular designs for differentiation etc. are strategies adopted by automotive OEMs towards shorter development cycles. Thus, concept generation phase of the digital product development process is expected to enable generation and evaluation of multiple concept architectures, carry out performance studies and largely focus on optimization, upfront. This Front loading of engineering and call for simultaneous engineering requires support in terms of quick and good CAD modeling with maturity. This paper proposes a process that focuses on generation and evaluation of multiple concepts, besides enabling optimization of concept before the detailed design phase kicks in.
Journal Article

Front Under Run Protection Device Strength Test Certification Through FE Simulations

2011-04-12
2011-01-0529
Passive safety regulations specify minimum safety performance requirements of vehicle in terms of protecting its occupants and other road users in accident scenarios. Currently for majority cases, the compliance of vehicle design to passive safety regulations is assessed through physical testing. With increased number of products and more comprehensive passive safety requirements, the complexity of certification is getting challenged due to high cost involved in prototype parts and the market pressures for early product introduction through reduced product development timelines. One of the ways for addressing this challenge is to promote CAE based certification of vehicle designs for regulatory compliance. Since accuracy of CAE predictions have improved over a period of time, such an approach is accepted for few regulations like ECE-R 66/01, AIS069 etc which involves only loadings of the structures.
Technical Paper

A Low Cost Euro-III Development Strategy for 4 L Engine for Commercial Vehicle Application

2006-10-16
2006-01-3384
Reduction of NOx (Oxides of Nitrogen) and particulates from engine exhaust is one of the prime considerations in current research and development in automotive industry. The present paper describes the combustion optimization done on a four cylinder, 4 liter DI diesel engine to meet stringent Euro-III emission norms. The engine FIE (Fuel Injection Equipment) and injector geometry was optimized for performance and emission. Smoke measurements were considered as indicative of soot, to predict particulate emissions. This was done to simplify the overall process and save development time. It was concluded that by combining the flexibility of electronically controlled fuel injection begin, with improved nozzle technologies, with higher spray velocities and spray penetration, a considerable reduction in NOx and particulate emissions can be achieved. This can serve as a low cost solution, without any exhaust after-treatment systems.
Technical Paper

Design of Cabin Suspension Characteristics of Heavy Commercial Vehicle

2008-04-14
2008-01-0265
In the commercial vehicle business, Tractor-trailer combination vehicles are mostly used for carrying heavy loads for longer distances. To improve operating economy of the vehicle by reducing turn around time, it becomes a necessity to have a better driving comfort level for the vehicles. In a Tractor-trailer combination vehicle, due to point load acting on the tractor, pitching effect on the cab is very dominant. To overcome this pitching effect, a fully suspended cabin (suspended at four points) has been designed in order to have better ride comfort as compared to the fixed cabin. This paper discusses some of the measures taken to reduce the overall cabin pitching effect on Tractor -trailer combination vehicles.
Technical Paper

Design of Commercial Vehicle Cooling Packages

2008-04-14
2008-01-0264
Optimization of vehicle engine cooling package with requisite heat rejection capacity plays a key role in achieving most fuel economy and also in meeting the stringent noise norms. A set of design and operating features from existing vehicle engine cooling systems is reviewed and evaluated for their potential to provide optimized engine cooling. The features reviewed states significant potential in engine performance but these are balanced by satisfying required engine cooling requirement. Sets of trials are carried out on said vehicle with dissimilar features of cooling packages and the results are evaluated. Fuel economy trials in performance mode are carried out on vehicle with well thought-out cooling package for healthier comparison.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

A DFSS Approach to Design Cooling System of Small Passenger Car Having Rear Engine and Front Mounted Radiator

2016-04-05
2016-01-0657
DFSS is a disciplined problem prevention approach which helps in achieving the most optimum design solution and provides improved and cost effective quality products. This paper presents the implementation of DFSS method to design a distinctive cooling system where engine is mounted in the rear and radiator is mounted in the front of the car. In automobile design, a rear-engine design layout places the engine at the rear of the vehicle. This layout is mainly found in small, entry level cars and light commercial vehicles chosen for three reasons - packaging, traction, and ease of manufacturing. In conventional Passenger cars, a radiator is located close to the engine for simple packaging and efficient thermal management. This paper is about designing a distinctive cooling system of a car having rear mounted engine and front mounted radiator.
Technical Paper

A Study on Improvements in Side Impact Test vs CAE Structural Correlation

2013-01-09
2013-26-0034
Computer Aided Engineering (CAE) plays an important role in the product development. Now a days major decisions like concept selection and design sign off are taken based on CAE. All the Original Equipment Manufacturers (OEMs) are putting consistent efforts to improve accuracy of the CAE results. In recent years confidence on CAE prediction has been increased mainly because of good correlation of CAE predictions with the test results. Defining proper correlation criteria and using a systematic approach helps significantly in building the overall confidence level for predictions given by CAE simulations. Representation of manufacturing effects on material properties and material failure in the simulation is still a big challenge for achieving a good CAE correlation. This paper describes side impact test vs CAE correlation. The important parameters affecting the CAE correlation were discussed.
Technical Paper

Challenges to Meet New Noise Regulations and New Noise Limits for M and N Category Vehicles

2013-01-09
2013-26-0107
New noise regulations, with reduced noise limits, have been proposed by UN-ECE. A new method which aims at representing urban driving of the vehicles more closely on roads is proposed and is considerably different from the existing one (IS 3028:1998). It is more complex; we also found that some of the low powered vehicles can not be tested as per this method. The paper proposes ways of improvement in the test method. The new noise reduction policy options will have a considerable impact on compliance of many categories of vehicles. Technological challenges, before the manufacturers, to meet all performance needs of the vehicle along with the cost of development will be critical to meet the new noise limits in the proposed time frame.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Technical Paper

Spot Weld Failure Prediction in Safety Simulations Using MAT-240 Material Model in LS-DYNA

2015-01-14
2015-26-0165
Spot welding is the primary joining method used in automobiles. Spot-weld plays a major role to maintain vehicle structural integrity during impact tests. Robust spot weld failure definitions is critical for accurate predictions of structural performance in safety simulations. Spot welds have a complex metallurgical structure, mainly consisting of fusion and heat affected zones. For accurate material property definitions in simulation models, huge number of inputs from test data is required. Multiple tests, using different spot weld joinery configurations, have to be conducted. In order to accurately represent the spot-weld behavior in CAE, detailed modeling is required using fine mesh. The current challenge in spot-weld failure assessment is developing a methodology having a better trade-off between prediction accuracy, testing efforts and computation time. In view of the above, cohesive zone models have been found to be very effective and accurate.
Technical Paper

Approach for Dynamic Analysis of Automotive Exhaust System

2008-10-07
2008-01-2666
The automotive industry is heading in the direction of signing off the exhaust system durability based on computer simulation rather than rig simulation and physical vehicle testing. This is due to the cost, time and availability of prototype vehicles and test track. Use of Finite Element Method (FEM) enables to assure the structural integrity of the exhaust system and also contribute to better understanding of the system behavior in the various operating conditions and evaluation of structural strength. This paper deals with dynamic analysis of a modular automotive exhaust system where it is directly mounted on power train pack. Selection of dynamic loads, processing of the test data, and effect of assembly loads along with material property variation due to temperature are explained. It also includes validation of the CAE model, prediction of probable failure locations and improving the design based on analysis outcome.
Technical Paper

Investigation on the Effect of Design Feature on Acoustic Performance of Exhaust Muffler for Vehicle

2022-12-23
2022-28-0488
Primarily, Acoustic performance of muffler are evaluated by insertion loss (IL) and backpressure/restriction. Where Insertion loss is mainly depends upon proper selection of muffler volume, which is proportional to Engine Swept volume, along with internal design configuration, which drives the acoustic principle. Same time, meeting the vehicle level pass by noise (PBN) value as per regulatory norms and system level backpressure as per engine specification sheet are the key evaluating criteria of any good exhaust system. Here, a new Reactive/Reflective type muffler of tiny size have been designed for heavy commercial vehicle application, which is unique in shape and innovative to meet desire performance. In this design, mainly sudden expansion, sudden contraction, flow through perforation and bell-mouth flow phenomenon are used.
X