Refine Your Search

Topic

Search Results

Journal Article

Real Time Implementation of DOC-DPF Models on a Production-Intent ECU for Controls and Diagnostics of a PM Emission Control System

2009-10-06
2009-01-2904
This paper describes the joint development by Tenneco and Pi Shurlok of a complete diesel engine aftertreatment system for controlling particulate matter emissions. The system consists of a DOC, DPF, sensors, controller and an exhaust fuel injection system to allow active DPF regeneration. The mechanical components were designed for flow uniformity, low backpressure and component durability. The overall package is intended as a complete PM control system solution for OEMs, which does not require any significant additions to the OEM's engine control strategies and minimizes integration complexity. Thus, to make it easier to adapt to different engine platforms, ranging from small off-road vehicle engines to large locomotive engines, model-based control algorithms were developed in preference to map-based controls.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

Secondary Fuel Injection Layout Influences on DOC-DPF Active Regeneration Performance

2013-09-24
2013-01-2465
Catalysts and filters continue to be applied widely to meet particulate matter regulations across new and retrofit diesel engines. Soot management of the filter continues to be enhanced, including regeneration methodologies. Concerns regarding in-cylinder post-injection of fuel for active regeneration increases interests in directly injecting this fuel into the exhaust. Performance of secondary fuel injection layouts is discussed, and sensitivities on thermal uniformity are measured and analyzed, providing insight to packaging challenges and methods to characterize and improve application designs. Influences of end cone geometries, mixers, and injector mounting positions are quantified via thermal distribution at each substrate's outlet. A flow laboratory is applied for steady state characterization, repeated on an engine dynamometer, which also provides transient results across the NRTC.
Journal Article

Fatigue Life and Non-Linear Strength Predictions for Heavy Stamping Steel Parts

2015-04-14
2015-01-0605
Strength and fatigue life prediction is very difficult for stamped structural steel parts because the manufacturing process alters the localized material properties. Traditional tensile tests cannot be used to obtain material properties due to size limitations. Because of this, FEA predictions are most often “directional” at best. In this paper an improved prediction methodology is suggested. With a material library developed from standard homogenous test specimens, or even textbook material property tables, localized strength and plastic strain numbers can be inferred from localized hardness tests(1). The new method, using standard ABAQUS static analysis (not commercial fatigue analysis software with many unknowns), is shown to be very accurate. This paper compares the new process FEA strength and fatigue life predictions to laboratory test results using statistical confidence intervals.
Journal Article

Probabilistic Life and Damage Assessment of Components under Fatigue Loading

2015-09-29
2015-01-2759
This study presents a probabilistic life (failure) and damage assessment approach for components under general fatigue loadings, including constant amplitude loading, step-stress loading, and variable amplitude loading. The approach consists of two parts: (1) an empirical probabilistic distribution obtained by fitting the fatigue failure data at various stress range levels, and (2) an inverse technique, which transforms the probabilistic life distribution to the probabilistic damage distribution at any applied cycle. With this approach, closed-form solutions of damage as function of the applied cycle can be obtained for constant amplitude loading. Under step-stress and variable amplitude loadings, the damage distribution at any cycle can be calculated based on the accumulative damage model in a cycle-by-cycle manner. For Gaussian-type random loading, a cycle-by-cycle equivalent, but a much simpler closed-form solution can be derived.
Journal Article

Failure Mode Effects and Fatigue Data Analyses of Welded Vehicle Exhaust Components and Its Applications in Product Validation

2016-04-05
2016-01-0374
Vehicle exhaust components and systems under fatigue loading often show multiple failure modes, which should be treated, at least theoretically, with rigorous advanced bi-modal and multi-modal statistical theories and approaches. These advanced methods are usually applied to mission-critical engineering applications such as nuclear and aerospace, in which large amounts of test data are often available. In the automotive industry, however, the sample size adopted in the product validation is usually small, thus the bi-modal and multi-modal phenomena cannot be distinguished with certainty.
Journal Article

Statistical Characterization, Pattern Identification, and Analysis of Big Data

2017-03-28
2017-01-0236
In the Big Data era, the capability in statistical and probabilistic data characterization, data pattern identification, data modeling and analysis is critical to understand the data, to find the trends in the data, and to make better use of the data. In this paper the fundamental probability concepts and several commonly used probabilistic distribution functions, such as the Weibull for spectrum events and the Pareto for extreme/rare events, are described first. An event quadrant is subsequently established based on the commonality/rarity and impact/effect of the probabilistic events. Level of measurement, which is the key for quantitative measurement of the data, is also discussed based on the framework of probability. The damage density function, which is a measure of the relative damage contribution of each constituent is proposed. The new measure demonstrates its capability in distinguishing between the extreme/rare events and the spectrum events.
Technical Paper

Optimization of a Urea SCR System for On-Highway Truck Applications

2010-10-05
2010-01-1938
In order to satisfy tightening global emissions regulations, diesel truck manufacturers are striving to meet increasingly stringent Oxides of Nitrogen (NOx) reduction standards. The majority of heavy duty diesel trucks have integrated urea SCR NOx abatement strategies. To this end, aftertreatment systems need to be properly engineered to achieve high conversion efficiencies. A EuroV intent urea SCR system is evaluated and failed to meet NOx conversion targets with severe urea deposit formation. Systematic enhancements of the design have been performed to enable it to meet targets, including emission reduction efficiency via improved reagent mixing, evaporation, distribution, back pressure, and removing of urea deposits. Multiple urea mixers, injector mounting positions and various system layouts are developed and evaluated, including both CFD analysis and full scale laboratory tests.
Technical Paper

Development of Probabilistic Fatigue Life Distribution Functions with Lower and Upper Bounds

2017-03-28
2017-01-0354
A probabilistic distribution function roughly consists of two parts: the middle part and the tails. The fatigue life distribution at a stress/load level is often described with two-parameter lognormal or Weibull distribution functions, which are more suitable for modeling the mean (middle) behaviors. The domains of the conventional probabilistic distribution functions are often unbounded, either infinite small (0 for the two-parameter Weibull) or infinite large or both. For most materials in low- and medium-cycle fatigue regimes, the domains of fatigue lives are usually bounded, and the inclusion of the bounds in a probabilistic model is often critical in some applications, such as product validation and life management. In this paper, four- and five-parameter Weibull distribution functions for the probabilistic distributions with bounds are developed. Finally, the applications of these new models in fatigue data analysis and damage assessment are provided and discussed.
Technical Paper

Accelerated Reliability Demonstration Methods Based on Three-Parameter Weibull Distribution

2017-03-28
2017-01-0202
Life testing or test-to-failure method and binomial testing method are the two most commonly used methods in product validation and reliability demonstration. The two-parameter Weibull distribution function is often used in the life testing and almost exclusively used in the extended time testing, which can be considered as an accelerated testing method by appropriately extending the testing time but with significantly reduced testing samples. However, the fatigue data from a wide variety of sources indicate that the three-parameter Weibull distribution function with a threshold parameter at the left tail is more appropriate for fatigue life data with large sample sizes. The uncertainties introduced from the assumptions about the underlying probabilistic distribution would significantly affect the interpretation of the test data and the assessment of the performance of the accelerated binomial testing methods, therefore, the selection of a probabilistic model is critically important.
Technical Paper

Clean EGR for Gasoline Engines – Innovative Approach to Efficiency Improvement and Emissions Reduction Simultaneously

2017-03-28
2017-01-0683
External Exhaust Gas Recirculation (EGR) has been used on diesel engines for decades and has also been used on gasoline engines in the past. It is recently reintroduced on gasoline engines to improve fuel economy at mid and high engine load conditions, where EGR can reduce throttling losses and fuel enrichment. Fuel enrichment causes fuel penalty and high soot particulates, as well as hydrocarbon (HC) emissions, all of which are limited by emissions regulations. Under stoichiometric conditions, gasoline engines can be operated at high EGR rates (> 20%), but more than diesel engines, its intake gas including external EGR needs extreme cooling (down to ~50°C) to gain the maximum fuel economy improvement. However, external EGR and its problems at low temperatures (fouling, corrosion & condensation) are well known.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Technical Paper

Durability Analysis of 3-Axis Input to Elastomeric Front Lower Control Arm Vertical Ride Bushing

2017-06-05
2017-01-1857
Fatigue life prediction of elastomer NVH suspension products has become an operating norm for OEMs and suppliers during the product quoting process and subsequent technical reviews. This paper reviews a critical plane analysis based fatigue simulation methodology for a front lower control arm. Filled natural rubber behaviors were measured and defined for the analysis, including: stress-strain, fatigue crack growth, strain crystallization, fatigue threshold and initial crack precursor size. A series of four distinct single and dual axis bench durability tests were derived from OEM block cycle specifications, and run to end-of-life as determined via a stiffness loss criterion. The tested parts were then sectioned in order to compare developed failure modes with predicted locations of crack initiation. In all cases, failure mode was accurately predicted by the simulation, and predicted fatigue life preceded actual end-of-life by not more than a factor of 1.4 in life.
Technical Paper

Temperature Effect in Exhaust System Fatigue Life Prediction

2011-04-12
2011-01-0783
Automotive exhaust system experiences vibratory and thermal loads. Bogey test had been the major validation method until recent years when the strain-life approach was adopted to evaluate component's fatigue life. In practice, when using the strain-life model to evaluate a component subjected to elevated temperature, temperature effect on component fatigue life is considered by introducing a temperature scale factor KC that is used to scale up the measured nominal strain, hence the mechanical load. This paper intends to propose a method to estimate KC by designing component bench tests at room temperature and at elevated temperature, respectively. Two major failure modes in the exhaust system are investigated and different temperature effects on the base metal fatigue and on the weld or heat-affected zone are analyzed.
Technical Paper

Data Analysis, Modeling, and Predictability of Automotive Events

2018-04-03
2018-01-0094
It is important to quantitatively characterize the automotive events in order to not only accurately interpret their past but also to reliably predict and forecast their short-term, medium-term, and even long-term future. In this paper, several automotive industry related events, i.e. vehicle safety, vehicle weight/HP ratio, the emissions of CO2, HC, CO, and NOx, are analyzed to find their general trends. Exponential and power law functions are used to empirically fit and quantitatively characterize these data with an emphasis on the two functions’ effectiveness in predictability. Finally, three empirical emission laws based on the historical HC, CO, and NOx data are proposed and the impact of these laws on emission control is discussed.
Technical Paper

A Fatigue S-N Curve Transformation Technique and Its Applications in Fatigue Data Analysis

2018-04-03
2018-01-0791
The approaches of obtaining both fatigue strength distribution and fatigue life distribution for a given set of fatigue S-N data are reviewed in this paper. A new fatigue S-N curve transformation technique, which is based on the fundamental statistics definition and some reasonable assumptions, is specifically developed in this paper to transform a fatigue life distribution to a fatigue strength distribution. The procedures of applying the technique to multiple-stress level, two-stress level, and one-stress level fatigue S-N data are presented.
Technical Paper

Potential Failure Modes and Accelerating Test Strategy of Burner

2012-04-16
2012-01-0523
Driven by diesel engine emission regulation, more emission aftertretment products have been under development by Tenneco to address the Particular Matter (PM) and NOx reduction needs. The T.R.U.E. (Thermal Regeneration Unit for Exhaust) Clean active thermal management system is one of the examples to reduce PM. The system is designed to increase exhaust temperatures for DPF (Diesel Particulate Filter) regeneration. This product is exposed to high temperature and high oxidation. Therefore, thermal fatigue, creep, oxidation and the interaction become critical mechanism to be considered for its durability. One of the key challenges to validate this product is to find a way of accelerated testing for thermal, creep, and oxidation as well as for vibration. In this paper, accelerated durability test strategy for high temperature device like T.R.U.E Clean is addressed.
Technical Paper

Water Recovery from Gasoline Engine Exhaust for Water Injection

2018-04-03
2018-01-0369
Water injection (WI) can improve gasoline engine performance and efficiency, and on-board water recovery technology could eliminate the need for customers to refill an on-board water reservoir. In this regard, the technical feasibility of exhaust water recovery (EWR) is described in this paper. Water injection testing was conducted at a full load condition (5000 rpm/18.1 bar BMEP) and a high load condition (3000 rpm/14.0 bar BMEP) on a turbocharged gasoline direction injection (GTDI) engine. Water recovery testing was conducted both after the exhaust gas recirculation (EGR) cooler and after the charge air cooler (CAC) at a high load (3000 rpm/14.0 bar BMEP), as well as a part load (2080 rpm/6.8 bar BMEP) condition, at temperatures ca. 10-15 °C below the dew point of the flow stream. Three types of water separation designs were tested: a passive cyclone separator (CS), a passive membrane separator (MEM), and an active separator (AS).
Technical Paper

Transient Performance of an HC LNC Aftertreatment System Applying Ethanol as the Reductant

2012-09-24
2012-01-1957
As emissions regulations around the world become more stringent, emerging markets are seeking alternative strategies that align with local infrastructures and conditions. A Lean NOx Catalyst (LNC) is developed that achieves up to 60% NOx reduction with ULSD as its reductant and ≻95% with ethanol-based fuel reductants. Opportunities exist in countries that already have an ethanol-based fuel infrastructure, such as Brazil, improving emissions reduction penetration rates without costs and complexities of establishing urea infrastructures. The LNC performance competes with urea SCR NOx reduction, catalyst volume, reductant consumption, and cost, plus it is proven to be durable, passing stationary test cycles and adequately recovering from sulfur poisoning. Controls are developed and applied on a 7.2L engine, an inline 6-cylinder non-EGR turbo diesel.
X