Refine Your Search

Topic

Author

Search Results

Journal Article

Design of a Multi-Chamber Silencer for Turbocharger Noise

2009-05-19
2009-01-2048
A multi-chamber silencer is designed by a computational approach to suppress the turbocharger whoosh noise downstream of a compressor in an engine intake system. Due to the significant levels and the broadband nature of the source spanning over 1.5 – 3.5 kHz, three Helmholtz resonators are implemented in series. Each resonator consists of a chamber and a number of slots, which can be modeled as a cavity and neck, respectively. Their target resonance frequencies are tuned using Boundary Element Method to achieve an effective noise reduction over the entire frequency range of interest. The predicted transmission loss of the silencer is then compared with the experimental results from a prototype in an impedance tube setup. In view of the presence of rapid grazing flow, these silencers may be susceptible to whistle-noise generation. Hence, the prototype is also examined on a flow bench at varying flow rates to assess such flow-acoustic coupling.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Journal Article

Vehicle Coast Analysis: Typical SUV Characteristics

2008-04-14
2008-01-0598
Typical factors that contribute to the coast down characteristics of a vehicle include aerodynamic drag, gravitational forces due to slope, pumping losses within the engine, frictional losses throughout the powertrain, and tire rolling resistance. When summed together, these reactions yield predictable deceleration values that can be related to vehicle speeds. This paper focuses on vehicle decelerations while coasting with a typical medium-sized SUV. Drag factors can be classified into two categories: (1) those that are caused by environmental factors (wind and slope) and (2) those that are caused by the vehicle (powertrain losses, rolling resistance, and drag into stationary air). The purpose of this paper is to provide data that will help engineers understand and model vehicle response after loss of engine power.
Technical Paper

Evaluation of a Shock Model for Vehicle Simulation

2007-04-16
2007-01-0845
This paper describes the development of a more accurate shock absorber model in order to obtain better vehicle simulation results. Previous shock models used a single spline to represent shock force versus shock velocity curves. These models produced errors in vehicle simulations because the damper characteristics are better represented by the application of a hysteresis loop in the model. Thus, a new damper model that includes a hysteresis loop is developed using Matlab Simulink. The damper characteristics for the new model were extracted from measurements made on a shock dynamometer. The new model better represents experimental shock data. The new shock model is incorporated into two different lumped-parameter vehicle models: one is a three degree-of-freedom vehicle handling model and the other is a seven degree-of-freedom vehicle ride model. The new damper model is compared with the previous model for different shock mileages (different degrees of wear).
Technical Paper

Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle

2007-04-16
2007-01-0815
This paper describes the development and implementation of an accurate and repeatable path-following algorithm focused ultimately on vehicle testing. A compact, lightweight, and portable hardware package allows easy installation and negligible impact on the vehicle mass, even for the smallest automobile. Innovative features include the ability to generate a smooth, evenly-spaced path vector regardless the quality of the given path. The algorithm proposed in this work is suitable for testing in a controlled environment. The system was evaluated in simulation and performed well in road tests at low speeds.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Design and Conduct of Precision Planetary Gear Vibration Experiments

2009-05-19
2009-01-2071
Despite a large body of analytical work characterizing the dynamic motion of planetary gears, supporting experimental data is limited. Experimental results are needed to support computer modeling and offer practical optimization guidelines to gear designers. This paper presents the design and implementation of a test facility and precision test fixtures for accurate measurement of planetary gear vibration at operating conditions. Acceleration measurements are made on all planetary bodies under controlled torque/speed conditions. Custom, high-precision test fixtures accommodate instrumentation, ensure accurate alignment, help isolate gear dynamics, and allow for variability in future testing. Results are compared with finite element and lumped parameter models.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Vibro-Acoustic Effects of Friction in Gears: An Experimental Investigation

2001-04-30
2001-01-1516
Amongst various sources of noise and vibrations in gear meshing, transmission error and sliding friction between the teeth are two major constituents. As the operating conditions are altered, the magnitude of these two excitations is affected differently and either of them can become the dominant factor. In this article, an experimental investigation is presented for identifying the friction excitation and to study the influence of tribological parameters on the radiated sound. Since both friction and transmission error excitations occur at the same fundamental period of one meshing cycle, they result in similar spectral contents in the dynamic response. Hence specific methods like the variation of parameters are designed in order to distinguish between the individual vibration and noise sources. The two main tribological parameters that are varied are the lubricant and the surface finish characteristics of gear teeth.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

An Investigation of Shaft Dynamic Effects on Gear Vibration and Noise Excitations

2003-05-05
2003-01-1491
Transmission error has long been identified to be the main exciter of gear whine noise. This research effort seeks to investigate the mechanisms and principal controlling factors that affect the actual noise generation from a typical gearbox housing due to transmission error excitations. The insight gained is expected to help in identifying possible noise control procedures in typical gearing applications. The example gearbox of this paper is an aircraft auxiliary-drive idler gearbox run at low load so that transmission error is the primary mesh excitation. A limited set of dynamic noise and vibration data are collected in transient speed run-ups. A contact-mechanics gear-tooth model is used to predict the static transmission error at each mesh. A finite-element model of the shafting that incorporates complex shaft and bearing data is used to predict the shaft dynamics with the static transmission error at the gear mesh(es) as the sole excitation.
Technical Paper

Testing and Validation of a Belted Alternator System for a Post-Transmission Parallel PHEV for the EcoCAR 3 Competition

2017-03-28
2017-01-1263
The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
Technical Paper

Development of an Analysis Program to Predict Efficiency of Automotive Power Transmission and Its Applications

2018-04-03
2018-01-0398
Prediction of power efficiency of gear boxes has become an increasingly important research topic since fuel economy requirements for passenger vehicles are more stringent, due to not only fuel cost but also environmental regulations. Under this circumstance, the automotive industry is dedicatedly focusing on developing a highly efficient gear box. Thus, the analysis of power efficiency of gear box should be performed to have a transmission that is highly efficient as much as possible at the beginning of design stage. In this study, a program is developed to analyze the efficiency of an entire gearbox, considering all components’ losses such as gear mesh, wet clutches, bearings, oil pump and so on. The analytical models are based on the formulations of each component power loss model which has been developed and published in many existing papers. The program includes power flow analysis of both a parallel gear-train and a planetary gear-train.
Technical Paper

Dynamic Evolution of the 3-D Flow Field During the Latter Part of the Intake Stroke in an IC Engine

1998-02-23
980485
Measurements of the temporal evolution of the 3-D velocity field were performed in an IC engine during the latter part of the intake stroke using a Water Analog Engine Simulation Rig and the 3-D Particle Tracking Velocimetry technique (3-D PTV). The engine head tested was a typical 4 valve, pent-roof type combustion chamber shape with slightly asymmetric intake passages to favor a preferred swirl with one intake valve almost deactivated to reinforce the swirling flow pattern. This study was aimed at characterizing the dynamic development of the flow field resulting from this head geometry and asymmetric valve event during the latter part of the intake stroke. The most salient feature of this flow field is that this final, highly organized and energetic vortex does not emerge until relatively late in the intake stroke. Even as late at 60° BBDC, the flow field is still characterized by smaller (of the order of 1/4 or 1/3 of the bore size) structures, particularly in the tumble plane.
Technical Paper

Nonlinear Modeling of an Electromagnetic Valve Actuator

2006-04-03
2006-01-0043
This paper presents the modeling of an Electromagnetic Valve Actuator (EMV). A nonlinear model is formulated and presented that takes into account secondary nonlinearities like hysteresis, saturation, bounce and mutual inductance. The uniqueness of the model is contained in the method used in modeling hysteresis, saturation and mutual inductance. Theoretical and experimental methods for identifying parameters of the model are presented. The nonlinear model is experimentally validated. Simulation and experimental results are presented for an EMV designed and built in our laboratory. The experimental results show that sensorless estimation could be a possible solution for position control.
Technical Paper

Effect of E-Modulus Variation on Springbackand a Practical Solution

2018-04-03
2018-01-0630
Springback affects the dimensional accuracy and final shape of stamped parts. Accurate prediction of springback is necessary to design dies that produce the desired part geometry and tolerances. Springback occurs after stamping and ejection of the part because the state of the stresses and strains in the deformed material has changed. To accurately predict springback through finite element analysis, the material model should be well defined for accurate simulation and prediction of stresses and strains after unloading. Despite the development of several advanced material models that comprehensively describe the Bauschinger effect, transient behavior, permanent softening of the blank material, and unloading elastic modulus degradation, the prediction of springback is still not satisfactory for production parts. Dies are often recut several times, after the first tryouts, to compensate for springback and achieve the required part geometry.
Technical Paper

Modeling and Simulation of a Shift Hydraulic System for a Stepped Automatic Transmission

2003-03-03
2003-01-0314
It is well-known that the shift hydraulic system plays a major role in the operation of stepped automatic transmissions. The main functions of the hydraulic system are to generate and maintain adequate fluid pressures for transmission operation, as well as to initiate gear shifts and control shift quality. Therefore, quantitative understanding of the dynamic behavior of the hydraulic system is critical to the improvement of automatic transmission performance. This paper presents the development of a nonlinear dynamic model for the shift hydraulic system of a stepped automatic transmission. The model includes all necessary dynamics, namely, hydraulic line pressure dynamics, solenoid valve dynamics, pressure control valve dynamics, as well as clutch and accumulator dynamics. The model is developed and implemented using Matlab/Simulink®, and is validated against experimental data.
Technical Paper

Corner Design in Deep Drawn Rectangular Parts

1997-02-24
970437
The influence of die corner geometry on the attainable draw depth of rectangular parts was investigated using 3-D FEM and optimum rectangular blanks. Axisymmetric cup analysis was not adequate because a corner assist effect promotes corner draw. Guidelines for selecting corner radius were developed and the sensitivities of the maximum part depth to other process variables, such as drawbead restraint force; die clearance gap; friction coefficient; strain rate sensitivity; material anisotropy; and strain hardening exponent, were simulated. The results are much more conservative than handbook rules, which to not to take into account the details of blank size, drawbead restraint, die geometry, material properties, and friction.
Technical Paper

Design of a Hybrid Exhaust Silencing System for a Production Engine

2005-05-16
2005-01-2349
A prototype hybrid exhaust silencing system consisting of dissipative and reactive components is designed based on the boundary element method (BEM) with a specific emphasis on its acoustic performance as evaluated relative to a production system. The outer dimensions of the prototype system are comparable to its production counterpart, which has two silencers connected by a pipe. The predicted transmission loss by BEM for the prototype is compared with the experimental results in an impedance tube for both the prototype and production hardware, providing a design guidance for the former. The sound pressure levels measured at the tailpipe exit during the engine ramp-up experiments in a dynamometer laboratory are presented to compare the two systems, providing the final assessment.
X