Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Impact of Some Gear Lubricants on the Surface Durability of Rolling Element Bearings

2006-04-03
2006-01-0357
The additive chemistry of some gear lubricants can have a major impact on the surface durability of rolling element bearings (1). Lubricant formulation has been slanted heavily toward protecting gear concentrated contacts from galling and wear. As such, much of the performance differentiation of lubricants has been dependent on highly accelerated, standardized laboratory tests related to gears. Methods have been proposed to evaluate and quantify a lubricant's performance characteristics as they relate to rolling element bearings (2). Results from several lubricant performance evaluations are presented. The implications of these findings suggest that the detrimental performance effects on rolling element bearings need further fundamental study by the lubricant industry.
Technical Paper

Methods for Assessing the Bearing Surface Durability Performance of Lubricant Formulations

2005-10-24
2005-01-3808
Lubricant formulations and lubricant additives have been demonstrated to have a major impact on the surface durability of rolling element bearings. However, there are very few standard tests used to assess the performance aspects of lubricants as they relate to bearing surface performance. Lubricant formulations have been slanted heavily toward protecting gear concentrated contacts from galling and wear. In addition, much of the performance differentiation of lubricants has been dependent on highly accelerated, standardized laboratory tests related to gears. Methods have been developed for properly evaluating a lubricant's performance characteristics as they relate to bearings. These methods are explained and the corresponding test results are reviewed, to show their effectiveness as lubricant performance evaluation tools.
Technical Paper

Enhanced Tapered Roller Bearing Performance

1987-11-08
871211
Tapered roller bearing performance has been enhanced through significant advances in bearing design, material quality, and manufacturing technology. These advances were made possible by the development of analysis methods and testing that pinpoint specific areas for improvement. As a result, maximum bearing performance can be achieved in smaller bearing designs or increased reliability can be realised within existing bearing sizes. Automotive and industrial designers have the opportunity to improve bearing application performance while accomplishing other objectives of lower weight and lower cost.
Technical Paper

Assessing and Predicting the Performance of Bearings in Debris Contaminated Lubrication Environment

1999-09-13
1999-01-2791
Many lubrication environments in various equipment applications are inherently contaminated with debris and require mechanical components that are, as much as possible, resistant to the potential detrimental effects of debris particles. Many design engineers and lubricant specialists often overlook potential relationships between the various component failure modes, lubricant debris contamination level and the engineering solutions that are created to overcome them. Various methods for evaluating the effectiveness of debris resistant bearings have been proposed for development. Some of these methods have become standard methods within each bearing manufacturer's organization. Using an experimental method, performance evaluation results of tapered roller bearings in the areas of material fatigue will be discussed. The potential performance advantages will be placed in context of understanding the performance needs in the application.
Technical Paper

A Bearing Life Prediction Method for Utilizing Progressive Functional Surface Damage Analysis from a Debris Contaminated Lubrication Environment

1999-09-13
1999-01-2793
Many lubrication environments in various equipment applications are inherently contaminated with debris and require mechanical components that are, as much as possible, resistant to the potential detrimental effects of debris particles. Many design engineers and lubricant specialists often overlook potential relationships between the various component failure modes, lubricant debris contamination levels, and engineering solutions that are created to overcome them. In addition, design engineers are in need of an analysis tool that can combine the various amounts of cumulative bearing damage occurring over time. As an example, bearing functional surfaces in many cases are progressively damaged over the life of the equipment. A new surface analysis tool is available which allows surface damage analysis to be completed at various stages of equipment life. This new surface analysis tool is appropriately called Debris Signature Analysis(sm).
Technical Paper

Debris Signature Analysis: A Method for Assessing the Detrimental Effect of Specific Debris Contaminated Lubrication Environments

1998-04-08
981478
Various methods for evaluating the effectiveness of debris resistant bearings have been proposed for development. Once evaluation methods are well established to select bearings, the user is faced with assessing severity and detrimental effects of a specific application's lubricant contamination on bearing performance. Many analysis tools have been suggested for determining this impact, including particle analysis for size distribution, type of material and contamination level. A novel approach for determining severity of damage has been investigated which attempts to integrate these typical tools with actual damage to functional surfaces. It seeks to provide a practical approach and is appropriately labeled Debris Signature Analysis. Results of actual assessments will be discussed and the assessment method described.
X