Refine Your Search



Search Results

Technical Paper

Is Toluene a Suitable LIF Tracer for Fuel Film Measurements?

Quantitative LIF measurements of liquid fuel films on the piston of direct-injected gasoline engines are difficult to achieve because generally these films are thin and the signal strength is low. Additionally, interference from scattered laser light or background signal can be substantial. The selection of a suitable fluorescence tracer and excitation wavelength plays an important role in the success of such measurements. We have investigated the possibility of using toluene as a tracer for fuel film measurements and compare it to the use of 3-pentanone. The fuel film dynamics in a motored engine at different engine speeds, temperatures and in-cylinder swirl levels is characterized and discussed.
Technical Paper

Friction Measurement in the Valve Train with a Roller Follower

The valve train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod forces, and cam speed. Results are presented for one exhaust valve of a motored Cummins L-10 engine. The instantaneous cam/roller friction force was determined from the instantaneous roller speed and the pin friction torque. The pushrod force and displacement were also measured. Friction work loss was determined for both cam and roller interface as well as the upper valve train which includes the valve pushrod, rocker arm, valve guide, and valve. Roller follower slippage on the cam was also determined. A kinematic analysis with the measured data provided the normal force and contact stress at cam/roller interface.(1) Finally, the valve train friction was found to be in the mixed lubrication regime.(2) Further efforts will address the theoretical analysis of valve train friction to predict roller slippage.
Technical Paper

A Survey of Alcohol as a Motor Fuel

Alcohol has been promoted and used as a motor fuel for more than 50 years. However, United States ethyl alcohol production is small compared with gasoline production. High latent heat of vaporization of alcohol makes possible some increase of power over gasoline. The heating value of alcohol is low and energy content of alcohol blends is less than that of gasoline; fuel consumption of blends is therefore increased. The ability of ethanol to improve the octane number of gasoline has diminished as the octane number of gasoline has improved. There is no published evidence that alcohols can appreciably reduce air pollution problems.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Testing and Modeling of Frequency Drops in Resonant Bending Fatigue Tests of Notched Crankshaft Sections

Resonant frequencies of a resonant bending system with notched crankshaft sections are obtained experimentally and numerically in order to investigate the effect of notch depth on the drop of the resonant frequency of the system. Notches with the depths ranging from 1 to 5 mm, machined by an EDM (Electrical-Discharging Machining) system, were introduced in crankshaft sections at the fillet between the main crank pin and crank cheek. The resonant frequencies of the resonant bending system with the crankshaft sections with various notch depths were first obtained from the experiments. Three-dimensional finite element models of the resonant bending system with the crankshafts sections with various notch depths are then generated. The resonant frequencies based on the finite element computations are in good agreement with those based on the experimental results.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Numerical Modeling of Cross Flow Compact Heat Exchanger with Louvered Fins using Thermal Resistance Concept

Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal management systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers, and intercoolers are typical examples of the compact heat exchangers that can be found in ground vehicles. Among the different types of heat exchangers for engine cooling applications, cross flow compact heat exchangers with louvered fins are of special interest because of their higher heat rejection capability with the lower flow resistance. In this study, a predictive numerical model for the cross flow type heat exchanger with louvered fins has been developed based on the thermal resistance concept and the finite difference method in order to provide a design and development tool for the heat exchanger. The model was validated with the experimental data from an engine cooling radiator.
Technical Paper

A Multi-Variable High-Speed Imaging Study of Ignition Instabilities in a Spray-Guided Direct-Injected Spark-Ignition Engine

Ignition stability was studied in an optical spray guided spark ignition direct injection engine. The impact of intake air dilution with nitrogen, spark plug orientation, ignition system dwell time, and fuel injector targeting was addressed. Crank angle resolved fuel distributions were measured with a high-speed planar laser-induced fluorescence technique for hundreds of consecutive cycles. IMEP, COV of IMEP, burn rates and spark energy delivered to the gas were examined and used in conjunction with the imaging data to identify potential reasons for misfires.
Technical Paper

Design and Development of a Turbocharged E85 Engine for Formula SAE Racing

A summary of the design and development process for a Formula SAE engine is described. The focus is on three fundamental elements on which the entire engine package is based. The first is engine layout and displacement, second is the fuel type, and third is the air induction method. These decisions lead to a design around a 4-cylinder 600cc motorcycle engine, utilizing a turbocharger and ethanol E-85 fuel. Concerns and constraints involved with vehicle integration are also highlighted. The final design was then tested on an engine dynamometer, and finally in the 2007 M-Racing FSAE racecar.
Technical Paper

The Influence of Inlet Air Conditions on Carburetor Metering

This paper provides data concerning the enrichment of automotive carburetors with variation of inlet air pressure and temperature. These changes occur with weather and the seasons, with altitude, and because of underhood heating. The early opening of the conventional carburetor enrichment value at altitude can add greatly to the “ normal” carburetor enrichment. Means for compensating the mixture ratio for these changes in inlet air conditions are known, but will almost certainly add to the complexity and cost of the engine induction system. The cost of improved devices must be compromised with the possible reduction in exhaust emissions and improvement in fuel economy.
Technical Paper

Characterization of Combustion and NO Formation in a Spray-Guided Gasoline Direct-Injection Engine using Chemiluminescence Imaging, NO-PLIF, and Fast NO Exhaust Gas Analysis

The spatial and temporal formation of nitric oxide in an optical engine operated with iso-octane fuel under spray-guided direct-injection conditions was studied with a combination of laser-induced fluorescence imaging, UV-chemiluminescence, and cycle resolved NO exhaust gas analysis. NO formation during early and late (homogeneous vs. stratified) injection conditions were compared. Strong spatial preferences and cyclic variations in the NO formation were observed depending on engine operating conditions. While engine-out NO levels are substantially lower for stratified engine operation, cyclic variations of NO formation are substantially higher than for homogeneous, stoichiometric operation.
Technical Paper

Inhomogeneities in HCCI Combustion: An Imaging Study

A four-valve-pentroof, direct-injection, optical engine fueled with n-heptane has been operated at four different steady-state HCCI operating conditions including 10% and 65% residuals, both at low and high swirl conditions. Both, planar toluene LIF and volume chemiluminescence show large scale inhomogeneity in the ensemble averaged images. The interpretation of the toluene-tracer LIF signals (when premixed with the fresh-air charge) as a marker for reaction homogeneity is discussed. A binarization scheme and a statistical analysis of the LIF images were applied to the per-cycle planar-LIF images revealing inhomogeneities both from cycle-to-cycle and within the regions of individual cycles that track with the average heat release rate. Comparison of these two homogeneity metrics between the four operating conditions reveals weak but discernable differences.
Technical Paper

Real Time Detection Filters for Onboard Diagnosis of Incipient Failures

This paper presents the real time implementation of detection filters for the diagnosis of incipient failures in electronically controlled internal combustion (IC) engines. The detection filters are implemented in a production vehicle. Recent results [1] have demonstrated the feasibility of a model-based failure detection and isolation (FDI) methodology for detecting partially failed components in electronically controlled vehicle subsystems. The present paper describes the real time application of the FDI concept to the detection of faults in sensors associated with the engine/controller In a detection filter, the performance of the engine/controller system is continuously compared to a prediction based on sensor measurements and an analytical model (typically a control model) of the system. Any discrepancy between actual and predicted performance is analyzed to identify the unique failure signatures related to specific system components.
Technical Paper

Model Analysis of a Diesel Engine Cylinder Block using HEXA8 Finite Elements - Analysis and Experiment

Analytical and experimental investigations of a diesel engine cylinder block are performed. An attempt is made to reduce modeling and analysis costs in the design process of an engine. Traditionally, the engine has been modeled using either 8-node or 20-node solid elements for stress and thermal analyses and modeled using 4-node plate and shell elements for the dynamic analysis. In this paper, a simpler finite element modeling technique using only 8 node solid elements for both dynamic and static analyses is presented. Based on this integrated modeling technique of finite elements, eigenvalues are calculated and compared with the experimental data obtained from modal testing of an actual engine cylinder block.
Technical Paper

Efficient Engine Models Using Recursive Formulation of Multibody Dynamics

Engine models with fully coupled dynamic effects of the engine components can be constructed through the use of commercial multibody dynamics codes, such as ADAMS and DADS. These commercial codes provide a modeling platform for very general mechanical systems and the time and effort required to learn how to use them may preclude their use for some engine designers. In this paper, we review an alternative and specialized modeling platform that functions as a template for engine design. Relative to commercial codes, this engine design template employs a recursive formulation of multibody dynamics, and thus it leads directly to the minimum number of equations of motion describing the dynamic response of the engine by a priori satisfaction of kinematic constraints. This is achieved by employing relative coordinates in lieu of the absolute coordinates adopted in commercial multibody dynamics codes. This engine modeling tool requires only minimal information for the input data.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Transient Spray Cone Angles in Pressure-Swirl Injector Sprays

The transient cone angle of pressure swirl sprays from injectors intended for use in gasoline direct injection engines was measured from 2D Mie scattering images. A variety of injectors with varying nominal cone angle and flow rate were investigated. The general cone angle behavior was found to correlate well qualitatively with the measured fuel line pressure and was affected by the different injector specifications. Experimentally measured modulations in cone angle and injection pressure were forced on a comprehensive spray simulation to understand the sensitivity of pulsating injector boundary conditions on general spray structure. Ignoring the nozzle fluctuations led to a computed spray shape that inadequately replicated the experimental images; hence, demonstrating the importance of quantifying the injector boundary conditions when characterizing a spray using high-fidelity simulation tools.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

The Prospects of Using Alcohol-Based Fuels in Stratified-Charge Spark-Ignition Engines

Near-term energy policy for ground transportation is likely to have a strong focus on both gains in efficiency as well as the use of alternate fuels; as both can reduce crude oil dependence and carbon loading on the environment. Stratified-charge spark-ignition direct-injection (SIDI) engines are capable of achieving significant gains in efficiency. In addition, these engines are likely to be run on alternative fuels. Specifically, lower alcohols such as ethanol and iso-butanol, which can be produced from renewable sources. SIDI engines, particularly the spray-guided variant, tend to be very sensitive to mixture preparation since fuel injection and ignition occur within a short time of each other. This close spacing is necessary to form a flammable mixture near the spark plug while maintaining an overall lean state in the combustion chamber. As a result, the physical properties of the fuel have a large effect on this process.