Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Late Intake Valve Closing Timing on Thermal Efficiency and Emissions Based on a Two-stage Turbocharger Diesel Engine

2013-04-08
2013-01-0276
This paper investigated the effects of late intake valve closing timing (IVCT) and two-stage turbocharger systems matching based on partially premixed combustion strategy. Tests were performed on a 12-liter L6 heavy-duty engine at loads up to 10 bar BMEP at various speed. IVCT (where IVCT is -80°ATDC, -65°ATDC and -55°ATDC at 1300 rpm, 1600 rpm and 1900 rpm, respectively) lowered the intake and exhaust difference pressure, reducing pumping loss and improved the effective thermal efficiency by 1%, 1.5% and 2% at BMEP of 5 bar at 1300 rpm, 1600 rpm and 1900 rpm. For certain injection timings and EGR rate, it is found that a significant reduction in soot (above 30%) and NOx (above 70%) emissions by means of IVCT. This is due to that IVCT lowered effective compression ratio and temperature during the compression stroke, resulting in a longer ignition delay as the fuel mixed more homogeneous with the charge air ahead of ignition.
Technical Paper

Numerical Study on a High Efficiency Gasoline Reformed Molecule HCCI Combustion Using Exergy Analysis

2017-03-28
2017-01-0735
In this study, the characteristics and the advantages on engine performance of the reformed molecule HCCI (RM-HCCI) combustion fueled with gasoline were investigated by exergy analysis. The processes of fuel reforming and the closed portion of the engine cycle were simulated integrated with chemical kinetics mechanism at varied compression ratio (CR) and constant speed conditions. Results showed the fuel reforming under high temperature and oxygen-free condition by the exhaust heat recovery and electric heating assistance could drive gasoline to transform to the small-molecule gas fuels, meanwhile enhanced the chemical exergy of the fuel. The reformed fuel contributed to extending ignition delay, so less dilution required in RM-HCCI engine when expanding high load compared with gasoline HCCI engine. Thus, RM-HCCI engine could achieve higher load than gasoline HCCI engine, with the improvements by 12%, 26%, and 31% at CR17, CR19, and CR21, respectively.
X