Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Surface Functional Groups and Graphitization Degree of Soot in the Sooting History of Methane Premixed Flame

The evolution of surface functional groups (SFGs) and the graphitization degree of soot generated in premixed methane flames are studied and the correlation between them is discussed. Test soot samples were obtained from an optimized thermophoretic sampling system and probe sampling system. The SFGs of soot were determined by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) after removing the soluble impurities from the soot samples, while the graphitization degree of soot was characterized by Raman spectrum and electron energy loss spectroscopy (EELS). The results reveal that the number of aliphatic C-H groups and C=O groups shows an initial increase and then decrease in the sooting history. The large amount of aliphatic C-H groups and small amount of aromatic C-H groups in the early stage of the soot mass growth process indicate that aliphatic C-H groups make a major contribution to the early stage of soot mass growth.
Technical Paper

Experimental Study on Combustion Characteristics of Methane/Gasoline Dual-Fuel in a SI Engine at Different Load Conditions

Methane as an attractive alternative fuel offers the most potential in clean combustion and low CO2 emissions. In this work, combustion characteristics of methane/gasoline dual-fuel were investigated in a spark-ignited engine with port-injection of methane and direct-injection of gasoline, allowing for variations in methane addition and excess air coefficient. Engine experimental results showed that under low load conditions, as methane mass rate was raised, there was a promotion in methane/gasoline dual-fuel combustion, and this became more obvious at lean conditions. Similar observations were also obtained when the engine was operated at intermediate load conditions, but a prolonged combustion duration was found with the methane addition. Further analysis showed that the promotion of methane/gasoline dual-fuel combustion with methane addition mainly occurred in the early stage of combustion, especially for lean conditions.
Journal Article

Laminar Burning, Combustion and Emission Characteristics of Premixed Methane- Dissociated Methanol-Air Mixtures

This research presents an experimental study of the laminar burning combustion and emission characteristics of premixed methane -dissociated methanol-air mixtures in a constant volume combustion chamber. All experiments were conducted at 3 bar initial pressure and 373K initial temperature. The dissociated methanol fractions were from 20% to 80% with 20% intervals, and the equivalence ratio varied from 0.6 to 1.8 with 0.2 intervals. The images of flame propagation were visualized by using a schlieren system. The combustion pressure data were measured and exhaust emissions were sampled with a portable exhaust gas analyzer. The results show that the unstretched laminar burning velocities increased significantly with dissociated methanol enrichment. The Markstein length decreased with increasing dissociated methanol fraction and decreasing equivalence ratio.