Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Pressure Drop and Soot Regeneration Characteristics through Hexagonal and Square Cell Diesel Particulate Filters

2017-03-28
2017-01-0979
Although diesel engines have higher output torque, lower fuel consumption, and lower HC pollutant emissions, larger amounts of NOx and PM are emitted, compared with equivalent gasoline engines. The diesel particulate filters (DPF) have proved one of the most promising aftertreatment technologies due to the more stringent particulate matters (PM) regulations. In this study, the computational fluid dynamics (CFD) model of DPF was built by utilizing AVL-Fire software code. The main objective of this paper was to investigate the pressure drop and soot regeneration characteristics of hexagonal and conventional square cell DPFs with various inlet mass flow rates, inlet temperatures, cell densities, soot loads and ash loads. Different cell geometry shapes of DPF were evaluated under various ash distribution types.
Technical Paper

Effects of Lubricating Oil Metallic Content on Morphology, Nanostructure and Graphitization Degree of Diesel Engine Exhaust Particles

2017-03-28
2017-01-1009
In this paper, the influences of metallic content of lubricating oils on diesel particles were investigated. Three lubricating oils with different levels of metallic content were used in a 2.22 Liter, two cylinders, four stroke, and direct injection diesel engine. 4.0 wt. % and 8 wt. % antioxidant and corrosion inhibitor (T202) were added into baseline lubricating oil to improve the performance respectively. Primary particle diameter distributions and particle nanostructure were compared and analyzed by Transmission Electron Microscope. The graphitization degrees of diesel particles from different lubricating oils were analyzed by Raman spectroscopy. Conclusions drawn from the experiments indicate that the metallic content increases the primary particles diameter at 1600 rpm and 2200 rpm. The primary particles diameter ranges from 5 nm to 65 nm and the distribution conformed to Gaussian distribution.
Technical Paper

Surface Functional Groups and Graphitization Degree of Soot in the Sooting History of Methane Premixed Flame

2017-03-28
2017-01-1003
The evolution of surface functional groups (SFGs) and the graphitization degree of soot generated in premixed methane flames are studied and the correlation between them is discussed. Test soot samples were obtained from an optimized thermophoretic sampling system and probe sampling system. The SFGs of soot were determined by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) after removing the soluble impurities from the soot samples, while the graphitization degree of soot was characterized by Raman spectrum and electron energy loss spectroscopy (EELS). The results reveal that the number of aliphatic C-H groups and C=O groups shows an initial increase and then decrease in the sooting history. The large amount of aliphatic C-H groups and small amount of aromatic C-H groups in the early stage of the soot mass growth process indicate that aliphatic C-H groups make a major contribution to the early stage of soot mass growth.
Technical Paper

A Theoretical Investigation of the Combustion of PRF90 under the Flexible Cylinder Engine Mode

2017-03-28
2017-01-1027
On-board fuel reforming offers a prospective clean combustion mode for the engines. The flexible cylinder engine strategy (FCE) is a new kind of such mode. In this paper, the combustion of the primary reference fuel of PRF90 was theoretically investigated in a homogeneous charge compression ignition engine to validate the FCE mode, mainly focusing on the ignition delay time, the flame speed, and the emissions. The simulations were performed by using the CHEMKIN2.0 package to demonstrate the fuel reforming process in the flexible cylinder, the cooling effect on the reformed products, and the combustions of the mixture of the fresh fuel and the reformed products in the normal cylinders. It was found that the FCE mode decreased the ignition delay time of the fuel by about 35 crank angles at a typical engine condition.
Technical Paper

A Simulation Study on Particle Motion in Diesel Particulate Filter Based on Microcosmic Channel Model

2018-04-03
2018-01-0964
As the prime after-treatment device for diesel particulate matter (PM) emission control, Diesel Particulate Filter (DPF) has been widely used for its high particle capture efficiency. In order to study the particle motion and deposition distributions in the DPF inlet channel, a 2-D wall flow DPF microcosmic channel model is built in this paper. The motion trajectories of particles with different sizes are investigated considering the drag force, Brownian motion, gravity and Saffman lift. The effects of the space velocity on particle motion trajectories and deposition distributions inside the inlet channel are evaluated. These results demonstrate that the particle motion trajectories are highly dependent on particle sizes and influenced by the space velocity. The effect of the Brownian motion is obvious for fine particles and suppressed when the space velocity is raised.
Technical Paper

Simulating the Flow and Soot Loading in Wall- Flow DPF Using a Two-Dimensional Mesoscopic Model

2018-04-03
2018-01-0955
A two-dimensional mesoscopic approach has been developed to investigate the flow and soot loading in the micro-channels of diesel particulate filter. Soot particle size examined is in the range of 10 nm to 10 μm. The flow is solved by an incompressible lattice Boltzmann model and the transport of solid particle is described in a Lagrangian frame of reference by cell automation probabilistic model. The lattice Boltzmann-cell automation probabilistic model (LB-CA model) is validated with the results of previous studies. The heterogeneous porous wall of DPF is generated by quartet structure generation set (QSGS). The effects of porous wall on the pressure field and velocity field are investigated. The distribution and deposition of soot particles with different sizes in clean channels are simulated. The dynamic evolution of solid boundary in soot particle capture process is investigated and the effects of the deposited soot particles on flow field are evaluated.
Technical Paper

Co-Simulation and Analysis on Aerodynamic Noise at the Engine Inlet

2018-04-03
2018-01-0686
As the intake noise is a major contributing factor to automotive passenger compartment noise levels, it has received much more attention than before. Because the plastic manifolds could induce and transmit more noise owing to their lighter weight, aerodynamic noise has become a more serious problem in plastic manifolds than in conventional aluminum-made manifolds. Due to the complexity of aerodynamic noise of the intake system, it is difficult to predict the noise precisely, especially for the part whose frequency is higher than 1000 Hz. This paper introduces a new co-simulation method to simulate the aerodynamic noise at the engine inlet. With the coupled simulation between two programs, GT-Power and Fluent, it could simulate the gas flow inside the engine intake system, under the actual running condition of engine.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Experimental Study on Combustion Characteristics of Methane/Gasoline Dual-Fuel in a SI Engine at Different Load Conditions

2018-04-03
2018-01-1140
Methane as an attractive alternative fuel offers the most potential in clean combustion and low CO2 emissions. In this work, combustion characteristics of methane/gasoline dual-fuel were investigated in a spark-ignited engine with port-injection of methane and direct-injection of gasoline, allowing for variations in methane addition and excess air coefficient. Engine experimental results showed that under low load conditions, as methane mass rate was raised, there was a promotion in methane/gasoline dual-fuel combustion, and this became more obvious at lean conditions. Similar observations were also obtained when the engine was operated at intermediate load conditions, but a prolonged combustion duration was found with the methane addition. Further analysis showed that the promotion of methane/gasoline dual-fuel combustion with methane addition mainly occurred in the early stage of combustion, especially for lean conditions.
Technical Paper

Pressure Drop Characteristics Through DPF with Various Inlet to Outlet Channel Width Ratios

2015-04-14
2015-01-1019
The main objective of this paper was to investigate the pressure drop characteristics of ACT (asymmetric cell technology) design filter with various inlet mass flow rates, soot loads and ash loads by utilizing 1-D computational Fluid Dynamics (CFD) method. The model was established by AVL Boost code. Different ratios of inlet to outlet channel width inside the DPF (Diesel Particulate Filter) were investigated to determine the optimal structure in practical applications, as well as the effect of soot and ash interaction on pressure loss. The results proved that pressure drop sensitivity of different inlet/outlet channel width ratios increases with the increased inlet mass flow rate and soot load. The pressure drop increases with the increased channel width ratio at the same mass flow rate. When there is little soot deposits inside DPF, the pressure drop increases with the bigger inlet.
Technical Paper

Fuel Saving Potential of Different Turbo-Compounding Systems Under Steady and Driving Cycles

2015-04-14
2015-01-0878
The performance of three different electric turbo-compounding systems under both steady and driving cycle condition is investigated in this paper. Three configurations studied in this paper are serial turbo-compounding, parallel turbo-compounding and electric assisted turbo-compounding. The electric power, global gain of the whole system (engine and power turbine) under steady operating condition is firstly studied. Then investigation under three different driving cycles is conducted. Items including fuel consumption, engine operating point distribution and transient response performance are analyzed among which the second item is done based on statistic method combined with the results obtained under steady operating conditions. Study under steady condition indicates that electric assisted turbo-compounding system is the best choice compared with the other two systems. The performance of serial turbo-compounding is load oriented while parallel configuration is speed oriented.
Technical Paper

Using Multiple Injection Strategies in Diesel PCCI Combustion: Potential to Extend Engine Load, Improve Trade-off of Emissions and Efficiency

2011-04-12
2011-01-1396
The Premixed Charge Compression Ignition (PCCI) engine has the potential to reduce soot and NOx emissions while maintaining high thermal efficiency at part load conditions. However, several technical barriers must be overcome. Notably ways must be found to control ignition timing, expand its limited operation range and limit the rate of heat release. In this paper, comparing with single fuel injection, the superiority of multiple-pulse fuel injection in extending engine load, improve emissions and thermal efficiency trade-off using high exhaust gas recirculation (EGR) and boost in diesel PCCI combustion is studied by engine experiments and simulation study. It was found that EGR can delay the start of hot temperature reactions, reduce the reaction speed to avoid knock combustion in high load, is a very useful method to expand high load limit of PCCI. EGR can reduce the NOx emission to a very small value in PCCI.
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

Experimental Study of Multiple Injections and Coupling Effects of Multi-Injection and EGR in a HD Diesel Engine

2009-11-02
2009-01-2807
Diesel engines have to reduce emissions to satisfy future emission legislations. The purpose of this paper is to investigate the effect of multiple injections and the combined effects of multi-injection and EGR on HD diesel engine emissions and performance. A common rail fuel injection system and high pressure EGR system based on variable geometry turbocharger (VGT) were used. Injection parameters (injection dwell and mass) were adjusted with different injection strategies (pilot-main, pilot-pilot-main, main-post and pilot-main-post) to find out the influence of these parameters on combustion and emissions. Secondly the coupling effects of multi-injection and EGR were evaluated at both high and low loads. Finally, while keeping NOx at 2.0 g/kW.h by adjusting EGR rate, the influence of injection parameters and EGR were tested to highlight their influence on smoke and BSFC.
Technical Paper

A Solution to Fuel Vaporization Problem in a Power Nozzle

2009-04-20
2009-01-1051
A power nozzle is a fuel injection actuator in which fuel is instantly compressed and then discharged by a solenoid piston pump with nozzle. Fuel vaporization inside the power nozzles is a challenging issue. This paper presents an effective solution to the fuel vaporization problem in the power nozzle. An applied physical process, fluid boundary layer pumping (FBLP), is found in this study. FBLP can result in fuel circulation within the fuel line of the power nozzle, which on one hand brings heat out of the power nozzle, and on the other hand blocks vapor from entering the piston pump.
Technical Paper

Noise Source Identification of a Diesel Engine Using Inverse Boundary Element Method

2008-04-14
2008-01-0729
The inverse boundary element method (IBEM) is presented to accurately identify the noise sources of a diesel engine in this study. The sound pressures on four near-field planes were measured as inputs for the method. Then, the acoustic model of the full diesel engine was established using the boundary element method, and the acoustic transfer vectors (ATV) between the surface normal velocity and acoustic pressure at field points were calculated over the frequency range of interest. Based on the measured sound pressure and the ATVs, the surface normal velocity distribution of the diesel engine was reconstructed by the IBEM. The reconstructed pressures at two reference field points were compared with the measured ones. Furthermore, the panel contribution of each engine component was analyzed through the reconstructed surface velocity.
Technical Paper

Effects of Late Intake Valve Closing Timing on Thermal Efficiency and Emissions Based on a Two-stage Turbocharger Diesel Engine

2013-04-08
2013-01-0276
This paper investigated the effects of late intake valve closing timing (IVCT) and two-stage turbocharger systems matching based on partially premixed combustion strategy. Tests were performed on a 12-liter L6 heavy-duty engine at loads up to 10 bar BMEP at various speed. IVCT (where IVCT is -80°ATDC, -65°ATDC and -55°ATDC at 1300 rpm, 1600 rpm and 1900 rpm, respectively) lowered the intake and exhaust difference pressure, reducing pumping loss and improved the effective thermal efficiency by 1%, 1.5% and 2% at BMEP of 5 bar at 1300 rpm, 1600 rpm and 1900 rpm. For certain injection timings and EGR rate, it is found that a significant reduction in soot (above 30%) and NOx (above 70%) emissions by means of IVCT. This is due to that IVCT lowered effective compression ratio and temperature during the compression stroke, resulting in a longer ignition delay as the fuel mixed more homogeneous with the charge air ahead of ignition.
Technical Paper

Kinetic Modeling of Soot Formation with Highlight in Effects of Surface Activity on Soot Growth for Diesel Engine Partially Premixed Combustion

2013-04-08
2013-01-1104
In this study, Partially Premixed Combustion (PPC) on a modified heavy-duty diesel engine was realized by hybrid combustion control strategy with flexible fuel injection timing, injection rate pattern modulation and high ratio of exhaust gas recirculation (EGR) at different engine loads. It features with different degrees of fuel/air mixture stratifications. The very low soot emissions of the experiments called for further understanding on soot formation mechanism so that to promote the capability of prediction. A new soot model was developed with highlight in effects of surface activity on soot growth for soot formation prediction in partially premixed combustion diesel engine. According to previous results from literatures on the importance of acetylene as growth specie of PAH and soot surface growth, a gas-phase reduced kinetic model of acetylene formation was developed and integrated into the new soot model.
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
X